1
|
Chang CL, Huang K, Chen TW, Chen W, Huang HH, Liu YL, Kuo CH, Chao K, Ke TW, Chiang SF. Prognostic and clinical significance of subcellular CDC27 for patients with rectal adenocarcinoma treated with adjuvant chemotherapy. Oncol Lett 2022; 24:238. [PMID: 35720473 PMCID: PMC9185143 DOI: 10.3892/ol.2022.13358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Rectal adenocarcinoma (READ) constitutes one-third of newly diagnosed colorectal cancer cases. Surgery, chemotherapy and concurrent chemoradiotherapy are the main treatments to improve patient outcomes for READ. However, patients with READ receiving these treatments eventually relapse, leading to a poor survival outcome. The present study collected surgical specimens from patients with READ and determined that cytoplasmic cell division cycle 27 (CDC27) expression was associated with the risk of lymph node metastasis and distant metastasis. Nuclear CDC27 expression was negatively associated with 5-year disease-free survival (DFS) and 5-year overall survival (OS) rates. Multivariate Cox proportional regression analysis showed that nuclear CDC27 was an independent prognostic factor in the patients with READ, especially in those treated with adjuvant chemotherapy. High nuclear CDC27 expression was significantly associated with poorer 5-year DFS (HR, 2.106; 95% CI, 1.275-3.570; P=0.003) and 5-year OS (HR, 2.369; 95% CI, 1.270-4.6810; P=0.005) rates. The data indicated that cytoplasmic CDC27 expression could affect tumor progression and that it plays an important role in metastasis. Nuclear CDC27 expression was markedly associated with poorer survival outcomes and was an independent prognostic factor in patients with postoperative adjuvant chemotherapy-treated READ. Thus, CDC27 expression serves as a potential prognostic marker for rectal tumor progression and chemotherapy treatment.
Collapse
Affiliation(s)
- Chia-Lin Chang
- Department of Hematology and Oncology, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| | - Kevin Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Tsung-Wei Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - William Chen
- Department of Colorectal Surgery, Hsinchu China Medical University Hospital, Hsinchu 30272, Taiwan, R.O.C
| | - Hsuan-Hua Huang
- Department of Pathology, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| | - Ya-Ling Liu
- Laboratory of Precision Medicine, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| | - Chia-Hui Kuo
- Laboratory of Precision Medicine, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| | - K.S. Chao
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shu-Fen Chiang
- Laboratory of Precision Medicine, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| |
Collapse
|
2
|
Kazemi-Sefat GE, Keramatipour M, Talebi S, Kavousi K, Sajed R, Kazemi-Sefat NA, Mousavizadeh K. The importance of CDC27 in cancer: molecular pathology and clinical aspects. Cancer Cell Int 2021; 21:160. [PMID: 33750395 PMCID: PMC7941923 DOI: 10.1186/s12935-021-01860-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background CDC27 is one of the core components of Anaphase Promoting complex/cyclosome. The main role of this protein is defined at cellular division to control cell cycle transitions. Here we review the molecular aspects that may affect CDC27 regulation from cell cycle and mitosis to cancer pathogenesis and prognosis. Main text It has been suggested that CDC27 may play either like a tumor suppressor gene or oncogene in different neoplasms. Divergent variations in CDC27 DNA sequence and alterations in transcription of CDC27 have been detected in different solid tumors and hematological malignancies. Elevated CDC27 expression level may increase cell proliferation, invasiveness and metastasis in some malignancies. It has been proposed that CDC27 upregulation may increase stemness in cancer stem cells. On the other hand, downregulation of CDC27 may increase the cancer cell survival, decrease radiosensitivity and increase chemoresistancy. In addition, CDC27 downregulation may stimulate efferocytosis and improve tumor microenvironment. Conclusion CDC27 dysregulation, either increased or decreased activity, may aggravate neoplasms. CDC27 may be suggested as a prognostic biomarker in different malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01860-9.
Collapse
Affiliation(s)
- Golnaz Ensieh Kazemi-Sefat
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran
| | | | - Kazem Mousavizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran. .,Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Gong P, Chen S, Zhang L, Hu Y, Gu A, Zhang J, Wang Y. RhoG-ELMO1-RAC1 is involved in phagocytosis suppressed by mono-butyl phthalate in TM4 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35440-35450. [PMID: 30350139 DOI: 10.1007/s11356-018-3503-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butyl phthalate (DBP) is one of the most dominant phthalate esters and is ubiquitous in the environment. Male reproductive toxicity of DBP and its active metabolite mono-butyl phthalate (MBP) has been demonstrated in in vivo and in vitro studies. The objective of this study was to explore the roles of RhoG-ELMO1-RAC1 in phagocytosis disrupted by MBP in TM4 cells. Mouse Sertoli cell lines (TM4 cells) were maintained and treated by various levels of MBP (1, 10, and 100 μM) for 24 h. Then, cells were harvested for further experiments. Phagocytic capacity of TM4 cells was detected by flow cytometry, immunofluorescence, and oil red O staining. RAC1 activity (GTP-RAC1) was measured by RAC1 pull-down assay. Expression of mRNA and protein related to phagocytosis including ELMO1, RhoG, and RAC1 was analyzed by qRT-PCR and Western blots, respectively. MBP inhibited phagocytosis of TM4 cells and downregulated GTP-RAC1 expression and movement to membrane markedly. Furthermore, ELMO1 protein expression was downregulated in a dose-dependent manner after MBP treatments. Additionally, expression of proteins relating to phagocytosis, including RhoG and GTP-RAC1, was decreased significantly, but expression of total-RAC1 remained unchanged. GTP-RAC1 expression increased dramatically after TM4 cells were transfected with ELMO1 or RhoG plasmid, but restored under co-treatments with MBP and ELMO1/RhoG plasmid. This study suggests that MBP can reduce the phagocytosis of Sertoli cells through RhoG-ELMO1-RAC1 pathway.
Collapse
Affiliation(s)
- Pan Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Shanshan Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Lulu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yanhui Hu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|