1
|
Chermakani P, Gowri P, Mahesh Kumar S, Sundaresan P. Exploring mito-nuclear genetic factors in Leber's hereditary optic neuropathy: insights from comprehensive profiling of unique cases. EXCLI JOURNAL 2023; 22:1077-1091. [PMID: 38054206 PMCID: PMC10694345 DOI: 10.17179/excli2023-6297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/06/2023] [Indexed: 12/07/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial complex I disorder and causes inexorable painless vision loss. Recent studies from India reported that a significant proportion of LHON patients lack primary mitochondrial DNA mutations, suggesting that alternative genetic factors contribute to disease development. Therefore, this study investigated the genetic profile of LHON-affected individuals in order to understand the role of mito-nuclear genetic factors in LHON. A total of thirty probands displaying symptoms consistent with LHON have undergone whole mitochondrial and whole exome sequencing. Interestingly, whole mtDNA sequencing revealed primary mtDNA mutations in 30 % of the probands (n=9), secondary mtDNA mutations in 40 % of the probands (n=12) and no mitochondrial changes in 30 % of individuals (n=9). Further, WES analysis determined pathogenic mutations in 11 different nuclear genes, especially in cases with secondary mtDNA mutations (n=6) or no mtDNA mutations (n=6). These findings provide valuable insight into LHON genetic predisposition, particularly in cases lacking primary mtDNA mutations. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Prakash Chermakani
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | - Poigaialwar Gowri
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Periasamy Sundaresan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
3
|
McCastlain K, Howell CR, Welsh CE, Wang Z, Wilson CL, Mulder HL, Easton J, Mertens AC, Zhang J, Yasui Y, Hudson MM, Robison LL, Kundu M, Ness KK. The Association of Mitochondrial Copy Number With Sarcopenia in Adult Survivors of Childhood Cancer. J Natl Cancer Inst 2021; 113:1570-1580. [PMID: 33871611 PMCID: PMC8562958 DOI: 10.1093/jnci/djab084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adult childhood cancer survivors are at risk for frailty, including low muscle mass and weakness (sarcopenia). Using peripheral blood mitochondrial DNA copy number (mtDNAcn) as a proxy for functional mitochondria, this study describes cross-sectional associations between mtDNAcn and sarcopenia among survivors. METHODS Among 1762 adult childhood cancer survivors (51.6% male; median age = 29.4 years, interquartile range [IQR] = 23.3-36.8), with a median of 20.6 years from diagnosis (IQR = 15.2-28.2), mtDNAcn estimates were derived from whole-genome sequencing. A subset was validated by quantitative polymerase chain reaction and evaluated cross-sectionally using multivariable logistic regression for their association with sarcopenia, defined by race-, age-, and sex-specific low lean muscle mass or weak grip strength. All statistical tests were 2-sided. RESULTS The prevalence of sarcopenia was 27.0%, higher among female than male survivors (31.5% vs 22.9%; P < .001) and associated with age at diagnosis; 51.7% of survivors with sarcopenia were diagnosed ages 4-13 years (P = .01). Sarcopenia was most prevalent (39.0%) among central nervous system tumor survivors. Cranial radiation (odds ratio [OR] = 1.84, 95% confidence interval [CI] = 1.32 to 2.59) and alkylating agents (OR = 1.34, 95% CI = 1.04 to 1.72) increased, whereas glucocorticoids decreased odds (OR = 0.72, 95% CI = 0.56 to 0.93) of sarcopenia. mtDNAcn decreased with age (β = -0.81, P = .002) and was higher among female survivors (β = 9.23, P = .01) and among survivors with a C allele at mt.204 (β = -17.9, P = .02). In adjusted models, every standard deviation decrease in mtDNAcn increased the odds of sarcopenia 20% (OR = 1.20, 95% CI = 1.07 to 1.34). CONCLUSIONS A growing body of evidence supports peripheral blood mtDNAcn as a biomarker for adverse health outcomes; however, this study is the first to report an association between mtDNAcn and sarcopenia among childhood cancer survivors.
Collapse
Affiliation(s)
- Kelly McCastlain
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carrie R Howell
- Department of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Catherine E Welsh
- Department of Mathematics & Computer Science, Rhodes College, Memphis, TN, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ann C Mertens
- Aflac Cancer & Blood Disorders Center at Children’s Healthcare of Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Melissa M Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Ness KK, Kirkland JL, Gramatges MM, Wang Z, Kundu M, McCastlain K, Li-Harms X, Zhang J, Tchkonia T, Pluijm SMF, Armstrong GT. Premature Physiologic Aging as a Paradigm for Understanding Increased Risk of Adverse Health Across the Lifespan of Survivors of Childhood Cancer. J Clin Oncol 2018; 36:2206-2215. [PMID: 29874132 DOI: 10.1200/jco.2017.76.7467] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The improvement in survival of childhood cancer observed across the past 50 years has resulted in a growing acknowledgment that simply extending the lifespan of survivors is not enough. It is incumbent on both the cancer research and the clinical care communities to also improve the health span of survivors. It is well established that aging adult survivors of childhood cancer are at increased risk of chronic health conditions, relative to the general population. However, as the first generation of survivors age into their 50s and 60s, it has become increasingly evident that this population is also at risk of early onset of physiologic aging. Geriatric measures have uncovered evidence of reduced strength and speed and increased fatigue, all components of frailty, among survivors with a median age of 33 years, which is similar to adults older than 65 years of age in the general population. Furthermore, frailty in survivors independently increased the risk of morbidity and mortality. Although there has been a paucity of research investigating the underlying biologic mechanisms for advanced physiologic age in survivors, results from geriatric populations suggest five biologically plausible mechanisms that may be potentiated by exposure to cancer therapies: increased cellular senescence, reduced telomere length, epigenetic modifications, somatic mutations, and mitochondrial DNA infidelity. There is now a critical need for research to elucidate the biologic mechanisms of premature aging in survivors of childhood cancer. This research could pave the way for new frontiers in the prevention of these life-changing outcomes.
Collapse
Affiliation(s)
- Kirsten K Ness
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - James L Kirkland
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maria Monica Gramatges
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Zhaoming Wang
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mondira Kundu
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kelly McCastlain
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Xiujie Li-Harms
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jinghui Zhang
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Tamar Tchkonia
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Saskia Martine Francesca Pluijm
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gregory T Armstrong
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
5
|
Poulton J, Finsterer J, Yu-Wai-Man P. Genetic Counselling for Maternally Inherited Mitochondrial Disorders. Mol Diagn Ther 2018; 21:419-429. [PMID: 28536827 DOI: 10.1007/s40291-017-0279-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this review was to provide an evidence-based approach to frequently asked questions relating to the risk of transmitting a maternally inherited mitochondrial disorder (MID). We do not address disorders linked with disturbed mitochondrial DNA (mtDNA) maintenance, causing mtDNA depletion or multiple mtDNA deletions, as these are autosomally inherited. The review addresses questions regarding prognosis, recurrence risks and the strategies available to prevent disease transmission. The clinical and genetic complexity of maternally inherited MIDs represent a major challenge for patients, their relatives and health professionals. Since many of the genetic and pathophysiological aspects of MIDs remain unknown, counselling of affected patients and at-risk family members remains difficult. MtDNA mutations are maternally transmitted or, more rarely, they are sporadic, occurring de novo (~25%). Females carrying homoplasmic mtDNA mutations will transmit the mutant species to all of their offspring, who may or may not exhibit a similar phenotype depending on modifying, secondary factors. Females carrying heteroplasmic mtDNA mutations will transmit a variable amount of mutant mtDNA to their offspring, which can result in considerable phenotypic heterogeneity among siblings. The majority of mtDNA rearrangements, such as single large-scale deletions, are sporadic, but there is a small risk of recurrence (~4%) among the offspring of affected women. The range and suitability of reproductive choices for prospective mothers is a complex area of mitochondrial medicine that needs to be managed by experienced healthcare professionals as part of a multidisciplinary team. Genetic counselling is facilitated by the identification of the underlying causative genetic defect. To provide more precise genetic counselling, further research is needed to clarify the secondary factors that account for the variable penetrance and the often marked differential expressivity of pathogenic mtDNA mutations both within and between families.
Collapse
Affiliation(s)
- Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Josef Finsterer
- Krankenanstalt Rudolfstiftung, Postfach 20, 1180, Vienna, Austria.
| | - Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|