1
|
Orosz F. Presence of p25alpha-Domain in Seed Plants (Spermatophyta): Microbial/Animal Contaminations and/or Orthologs. Life (Basel) 2023; 13:1664. [PMID: 37629521 PMCID: PMC10455874 DOI: 10.3390/life13081664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Genome and transcriptome assembly data often contain DNA and RNA contaminations from external organisms, introduced during nucleotide extraction or sequencing. In this study, contamination of seed plant (Spermatophyta) transcriptomes/genomes with p25alpha domain encoding RNA/DNA was systematically investigated. This domain only occurs in organisms possessing a eukaryotic flagellum (cilium), which seed plants usually do not have. Nucleotide sequences available at the National Center for Biotechnology Information website, including transcriptome shotgun assemblies (TSAs), whole-genome shotgun contigs (WGSs), and expressed sequence tags (ESTs), were searched for sequences containing a p25alpha domain in Spermatophyta. Despite the lack of proteins containing the p25alpha domain, such fragments or complete mRNAs in some EST and TSA databases were found. A phylogenetic analysis showed that these were contaminations whose possible sources were microorganisms (flagellated fungi, protists) and arthropods/worms; however, there were cases where it cannot be excluded that the sequences found were genuine hits and not of external origin.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
2
|
Xie J, Tan B, Zhang Y. A Large-Scale Study into Protist-Animal Interactions Based on Public Genomic Data Using DNA Barcodes. Animals (Basel) 2023; 13:2243. [PMID: 37508021 PMCID: PMC10376638 DOI: 10.3390/ani13142243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
With the birth of next-generation sequencing (NGS) technology, genomic data in public databases have increased exponentially. Unfortunately, exogenous contamination or intracellular parasite sequences in assemblies could confuse genomic analysis. Meanwhile, they can provide a valuable resource for studies of host-microbe interactions. Here, we used a strategy based on DNA barcodes to scan protistan contamination in the GenBank WGS/TSA database. The results showed a total of 13,952 metazoan/animal assemblies in GenBank, where 17,036 contigs were found to be protistan contaminants in 1507 assemblies (10.8%), with even higher contamination rates in taxa of Cnidaria (150/281), Crustacea (237/480), and Mollusca (107/410). Taxonomic analysis of the protists derived from these contigs showed variations in abundance and evenness of protistan contamination across different metazoan taxa, reflecting host preferences of Apicomplexa, Ciliophora, Oomycota and Symbiodiniaceae for mammals and birds, Crustacea, insects, and Cnidaria, respectively. Finally, mitochondrial proteins COX1 and CYTB were predicted from these contigs, and the phylogenetic analysis corroborated the protistan origination and heterogeneous distribution of the contaminated contigs. Overall, in this study, we conducted a large-scale scan of protistan contaminant in genomic resources, and the protistan sequences detected will help uncover the protist diversity and relationships of these picoeukaryotes with Metazoa.
Collapse
Affiliation(s)
- Jiazheng Xie
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Bowen Tan
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yi Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
3
|
Liang D, Chen H, An L, Li Y, Zhao P, Upadhyay A, Hansson BS, Zhao J, Han Q. Molecular identification and functional analysis of Niemann-Pick type C2 proteins,carriers for semiochemicals and other hydrophobic compounds in the brown dog tick, Rhipicephalus linnaei. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105451. [PMID: 37247999 DOI: 10.1016/j.pestbp.2023.105451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Ticks are important vectors of many pathogens with tremendous impact on human and animal health. Studies of semiochemical interactions and mechanisms underlying chemoreception can provide important tools in tick management. Niemann-Pick type C2 (NPC2) proteins have been proposed as one type of chemoreceptor in arthropods. Here, we cloned two NPC2 genes in the brown dog tick, Rhipicephalus linnaei, the tropical lineage previously named R. sanguineus sensu lato and characterized them functionally. R.linNPC2a and R.linNPC2b genes were found to be expressed at each developmental stage with the highest level in adult males. By using quantitative real-time PCR we revealed expression in multiple tissues, including midgut, ovary, salivary glands and legs. Ligand binding analysis revealed that R.linNPC2b bound a wide spectrum of compounds, with β-ionone, α-amylcinnamaldehyde, 2-nitrophenol and benzaldehyde displaying the strongest binding affinity (Ki < 10 μM), whereas R.linNPC2a showed a more narrow ligand binding range, with intermediate binding affinity to α-amylcinnamaldehyde and 2-nitrophenol (Ki < 20 μM). Molecular docking indicated that the amino acid residue Phe89, Leu77 and Val131 of R.linNPC2a and Phe70, Leu132 and Phe73 of R.linNPC2b could bind multiple ligands. These residues might thus play a key role in the identification of the volatiles. Our results contribute to the understanding of olfactory mechanisms of R. linnaei and can offer new pathways towards new management strategies.
Collapse
Affiliation(s)
- Dejuan Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Liping An
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Yao Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Peizhen Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Archana Upadhyay
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
4
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
5
|
Emelianova K, Martínez Martínez A, Campos-Dominguez L, Kidner C. Multi-tissue transcriptome analysis of two Begonia species reveals dynamic patterns of evolution in the chalcone synthase gene family. Sci Rep 2021; 11:17773. [PMID: 34493743 PMCID: PMC8423730 DOI: 10.1038/s41598-021-96854-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Begonia is an important horticultural plant group, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on chalcone synthase (CHS), a gene family having been shown to be involved in biotic and abiotic stress responses in other plant species, in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic analysis suggested the CHS gene family has high duplicate turnover, all members of CHS identified in Begonia arising recently, after the divergence of Begonia and Cucumis. Expression profiles were similar within orthologous pairs, but we saw high inter-ortholog expression variation. Sequence analysis showed relaxed selective constraints on some ortholog pairs, with substitutions at conserved sites. Evidence of pseudogenisation and species specific duplication indicate that lineage specific differences are already beginning to accumulate since the divergence of our study species. We conclude that there is evidence for a role of gene duplication in generating diversity through sequence and expression divergence in Begonia.
Collapse
Affiliation(s)
- Katie Emelianova
- grid.426106.70000 0004 0598 2103Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR UK ,grid.4305.20000 0004 1936 7988Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Andrea Martínez Martínez
- grid.426106.70000 0004 0598 2103Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR UK ,grid.4305.20000 0004 1936 7988School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Rd, Edinburgh, EH9 3JU UK
| | - Lucia Campos-Dominguez
- grid.426106.70000 0004 0598 2103Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR UK ,grid.4305.20000 0004 1936 7988School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Rd, Edinburgh, EH9 3JU UK
| | - Catherine Kidner
- grid.426106.70000 0004 0598 2103Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR UK ,grid.4305.20000 0004 1936 7988School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Rd, Edinburgh, EH9 3JU UK
| |
Collapse
|
6
|
Saffar A, Matin MM. Tracing foreign sequences in plant transcriptomes and genomes using OCT4, a POU domain protein. Mol Genet Genomics 2021; 296:677-688. [PMID: 33738520 DOI: 10.1007/s00438-021-01768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
Contaminations in sequencing data, especially in reference genomes, lead to inevitable errors in downstream analyses. Similarly, presence of contaminants in transcriptomes, misrepresents the molecular basis of various interactions. In this study, we report the presence of a large number of plant transcriptomes contaminated with RNAs encoding POU domain proteins; a family of proteins that has not been reported in plants and fungi. Besides, our findings illustrated that there are four POU domain protein-coding sequences in the reference genome of Rhodamnia argentea. It turned out that the existing foreign fragments are related to arthropods that are considered as plant pests. We also identified two contaminated draft genomes, Humulus lupulus and Cannabis sativa that contained complete rDNA sequences originating from Tetranychus species. As a result, careful screening of sequencing data before releasing them in public databases or checking existing genomes for possible contaminations is recommended.
Collapse
Affiliation(s)
- Adeleh Saffar
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
De Novo Transcriptome Assembly of Two Microsorum Fern Species Identifies Enzymes Required for Two Upstream Pathways of Phytoecdysteroids. Int J Mol Sci 2021; 22:ijms22042085. [PMID: 33669861 PMCID: PMC7923240 DOI: 10.3390/ijms22042085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
Microsorum species produce a high amount of phytoecdysteroids (PEs), which are widely used in traditional medicine in the Pacific islands. The PEs in two different Microsorum species, M. punctatum (MP) and M. scolopendria (MS), were examined using high-performance liquid chromatography (HPLC). In particular, MS produces a high amount of 20-hydroxyecdysone, which is the main active compound in PEs. To identify genes for PE biosynthesis, we generated reference transcriptomes from sterile frond tissues using the NovaSeq 6000 system. De novo transcriptome assembly after deleting contaminants resulted in 57,252 and 54,618 clean transcripts for MP and MS, respectively. The clean Microsorum transcripts for each species were annotated according to gene ontology terms, UniProt pathways, and the clusters of the orthologous group protein database using the MEGAN6 and Sma3s programs. In total, 1852 and 1980 transcription factors were identified for MP and MS, respectively. We obtained transcripts encoding for 38 and 32 enzymes for MP and MS, respectively, potentially involved in mevalonate and sterol biosynthetic pathways, which produce precursors for PE biosynthesis. Phylogenetic analyses revealed many redundant and unique enzymes between the two species. Overall, this study provides two Microsorum reference transcriptomes that might be useful for further studies regarding PE biosynthesis in Microsorum species.
Collapse
|
8
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
9
|
Zhu XY, Xu JW, Li LL, Wang DY, Zhang ML, Yu NN, Purba ER, Zhang F, Li XM, Zhang YN, Mang DZ. Analysis of chemosensory genes in Semiothisa cinerearia reveals sex-specific contributions for type-II sex pheromone chemosensation. Genomics 2020; 112:3846-3855. [DOI: 10.1016/j.ygeno.2020.06.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/01/2022]
|
10
|
Liu G, Xuan N, Rajashekar B, Arnaud P, Offmann B, Picimbon JF. Comprehensive History of CSP Genes: Evolution, Phylogenetic Distribution and Functions. Genes (Basel) 2020; 11:genes11040413. [PMID: 32290210 PMCID: PMC7230875 DOI: 10.3390/genes11040413] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
In this review we present the developmental, histological, evolutionary and functional properties of insect chemosensory proteins (CSPs) in insect species. CSPs are small globular proteins folded like a prism and notoriously known for their complex and arguably obscure function(s), particularly in pheromone olfaction. Here, we focus on direct functional consequences on protein function depending on duplication, expression and RNA editing. The result of our analysis is important for understanding the significance of RNA-editing on functionality of CSP genes, particularly in the brain tissue.
Collapse
Affiliation(s)
- Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.L.); (N.X.)
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.L.); (N.X.)
| | - Balaji Rajashekar
- Institute of Computer Science, University of Tartu, Tartu 50090, Estonia;
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, University of Nantes, 44322 Nantes, France; (P.A.); (B.O.)
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, University of Nantes, 44322 Nantes, France; (P.A.); (B.O.)
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.L.); (N.X.)
- School of Bioengineering, Qilu University of Technology, Jinan 250353, China
- Correspondence: ; Tel.: +86-531-89631190
| |
Collapse
|
11
|
Zheng Y, Wang SN, Peng Y, Lu ZY, Shan S, Yang YQ, Li RJ, Zhang YJ, Guo YY. Functional characterization of a Niemann-Pick type C2 protein in the parasitoid wasp Microplitis mediator. INSECT SCIENCE 2018; 25:765-777. [PMID: 28459128 DOI: 10.1111/1744-7917.12473] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/25/2017] [Accepted: 03/29/2017] [Indexed: 05/12/2023]
Abstract
Niemann-Pick type C2 (NPC2) is a type of small soluble protein involved in lipid metabolism and triglyceride accumulation in vertebrates and arthropods. Recent studies have determined that NPC2 also participates in chemical communication of arthropods. In this work, two novel NPC2 proteins (MmedNPC2a and MmedNPC2b) in Microplitis mediator were identified. Real-time quantitative PCR (qPCR) analysis revealed that MmedNPC2a was expressed higher in the antennae than in other tissues of adult wasps compared with MmedNPC2b. Subsequent immunolocalization results demonstrated that NPC2a was located in the lymph cavities of sensilla placodea. To further explore the binding characterization of recombinant MmedNPC2a to 54 candidate odor molecules, a fluorescence binding assay was performed. It was found MmedNPC2a could not bind with selected fatty acids, such as linoleic acid, palmitic acid, stearic acid and octadecenoic acid. However, seven cotton volatiles, 4-ethylbenzaldehyde, 3,4-dimethylbenzaldehyde, β-ionone, linalool, m-xylene, benzaldehyde and trans-2-hexen-1-al showed certain binding abilities with MmedNPC2a. Moreover, the predicted 3D model of MmedNPC2a was composed of seven β-sheets and three pairs of disulfide bridges. In this model, the key binding residues for oleic acid in CjapNPC2 of Camponotus japonicus, Lue68, Lys69, Lys70, Phe97, Thr103 and Phe127, are replaced with Phe85, Ser86, His87, Leu113, Tyr119 and Ile143 in MmedNPC2a, respectively. We proposed that MmedNPC2a in M. mediator may play roles in perception of plant volatiles.
Collapse
Affiliation(s)
- Yao Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei Province, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Ye-Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei Province, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Li F, Fu N, Li D, Chang H, Qu C, Wang R, Xu Y, Luo C. Identification of an Alarm Pheromone-Binding Chemosensory Protein From the Invasive Sycamore Lace Bug Corythucha ciliata (Say). Front Physiol 2018; 9:354. [PMID: 29681864 PMCID: PMC5897531 DOI: 10.3389/fphys.2018.00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 01/20/2023] Open
Abstract
The spread of the exotic insect pest sycamore lace bug Corythucha ciliata (Say) is increasing worldwide. The identification of behaviorally active compounds is crucial for reducing the current distribution of this pest. In this study, we identified and documented the expression profiles of genes encoding chemosensory proteins (CSPs) in the sycamore lace bug to identify CSPs that bind to the alarm pheromone geraniol. One CSP (CcilCSP2) that was highly expressed in nymph antennae was found to bind geraniol with high affinity. This finding was confirmed by fluorescence competitive binding assays. We further discovered one candidate chemical, phenyl benzoate, that bound to CcilCSP2 with even higher affinity than geraniol. Behavioral assays revealed that phenyl benzoate, similar to geraniol, significantly repelled sycamore lace bug nymphs but had no activity toward adults. This study has revealed a novel repellent compound involved in behavioral regulation. And, our findings will be beneficial for understanding the olfactory recognition mechanism of sycamore lace bug and developing a push-pull system to manage this pest in the future.
Collapse
Affiliation(s)
- Fengqi Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ningning Fu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Du Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hetang Chang
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Cheng Qu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yihua Xu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
13
|
Zhu J, Guo M, Ban L, Song LM, Liu Y, Pelosi P, Wang G. Niemann-Pick C2 Proteins: A New Function for an Old Family. Front Physiol 2018; 9:52. [PMID: 29472868 PMCID: PMC5810286 DOI: 10.3389/fphys.2018.00052] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick proteins type C2 (NPC2) are carriers of cholesterol in vertebrates, with a single member in each species. The high sequence conservation between mammals and across vertebrates is related to their common function. In contrast, NPC2 proteins in arthropods have undergone extensive duplication and differentiation, probably under environmental pressure, and are likely to have different functions. Recent studies have suggested that in arthropods these proteins might act as carriers for semiochemicals and other hydrophobic compounds. In this study we focused on the function of a specific NPC2 gene in the moth Helicoverpa armigera (HarmNPC2-1). This protein binds several flavonoids with micromolar dissociation constants. The best ligand was gossypol, present in cotton, one of the main host plants for H. armigera. Western blot revealed the presence of HarmNPC2-1 in different parts of the body, including the antennae, proboscis, and abdomen. In the antennae, in situ hybridization experiments produced strong staining in auxiliary cells at the base of sensilla trichodea, basiconica, coeloconica, and chaetica. Immunocytochemistry confirmed the expression of the protein in sensilla chaetica. Our results support a role of semiochemical carriers for NPC2 proteins in insects and indicate such proteins as new targets for insecticide-free pest population control.
Collapse
Affiliation(s)
- Jiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengbuo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Ban
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li-Mei Song
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Heikkinen LK, Kesäniemi JE, Knott KE. De novo transcriptome assembly and developmental mode specific gene expression of Pygospio elegans. Evol Dev 2017; 19:205-217. [PMID: 28869352 DOI: 10.1111/ede.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Species with multiple different larval developmental modes are interesting models for the study of mechanisms underlying developmental mode transitions and life history evolution. Pygospio elegans, a small, tube-dwelling polychaete worm commonly found in estuarine and marine habitats around the northern hemisphere, is one species with variable developmental modes. To provide new genomic resources for studying P. elegans and to address the differences in gene expression between individuals producing offspring with different larval developmental modes, we performed whole transcriptome Illumina RNA sequencing of adult worms from two populations and prepared a de novo assembly of the P. elegans transcriptome. The transcriptome comprises 66,233 unigenes, of which 33,807 contain predicted coding sequences, 26,448 have at least one functional annotation, and 3,076 are classified as putative long non-coding RNAs. We found more than 8,000 unigenes significantly differentially expressed between adult worms from populations producing either planktonic or benthic larvae. This comprehensive transcriptome resource for P. elegans adds to the available genomic data for annelids and can be used to uncover mechanisms allowing developmental variation in this and potentially other marine invertebrate species.
Collapse
Affiliation(s)
- Liisa K Heikkinen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jenni E Kesäniemi
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - K Emily Knott
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
15
|
Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev Camb Philos Soc 2017; 93:184-200. [DOI: 10.1111/brv.12339] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | | | - Jiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection, Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | | |
Collapse
|
16
|
Borner J, Burmester T. Parasite infection of public databases: a data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies. BMC Genomics 2017; 18:100. [PMID: 28103801 PMCID: PMC5244568 DOI: 10.1186/s12864-017-3504-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/14/2017] [Indexed: 11/24/2022] Open
Abstract
Background Contaminations from various exogenous sources are a common problem in next-generation sequencing. Another possible source of contaminating DNA are endogenous parasites. On the one hand, undiscovered contaminations of animal sequence assemblies may lead to erroneous interpretation of data; on the other hand, when identified, parasite-derived sequences may provide a valuable source of information. Results Here we show that sequences deriving from apicomplexan parasites can be found in many animal genome and transcriptome projects, which in most cases derived from an infection of the sequenced host specimen. The apicomplexan sequences were extracted from the sequence assemblies using a newly developed bioinformatic pipeline (ContamFinder) and tentatively assigned to distinct taxa employing phylogenetic methods. We analysed 920 assemblies and found 20,907 contigs of apicomplexan origin in 51 of the datasets. The contaminating species were identified as members of the apicomplexan taxa Gregarinasina, Coccidia, Piroplasmida, and Haemosporida. For example, in the platypus genome assembly, we found a high number of contigs derived from a piroplasmid parasite (presumably Theileria ornithorhynchi). For most of the infecting parasite species, no molecular data had been available previously, and some of the datasets contain sequences representing large amounts of the parasite’s gene repertoire. Conclusion Our study suggests that parasite-derived contaminations represent a valuable source of information that can help to discover and identify new parasites, and provide information on previously unknown host-parasite interactions. We, therefore, argue that uncurated assembly data should routinely be made available in addition to the final assemblies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3504-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janus Borner
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany.
| | - Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146, Hamburg, Germany.
| |
Collapse
|
17
|
Iovinella I, Ban L, Song L, Pelosi P, Dani FR. Proteomic analysis of castor bean tick Ixodes ricinus: a focus on chemosensory organs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 78:58-68. [PMID: 27693516 DOI: 10.1016/j.ibmb.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
In arthropods, the large majority of studies on olfaction have been focused on insects, where most of the proteins involved have been identified. In particular, chemosensing in insects relies on two families of membrane receptors, olfactory/gustatory receptors (ORs/GRs) and ionotropic receptors (IRs), and two classes of soluble proteins, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). In other arthropods, such as ticks and mites, only IRs have been identified, while genes encoding for OBPs and CSPs are absent. A third class of soluble proteins, called Niemann-Pick C2 (NPC2) has been suggested as potential carrier for semiochemicals both in insects and other arthropods. Here we report the results of a proteomic analysis on olfactory organs (Haller's organ and palps) and control tissues of the tick Ixodes ricinus, and of immunostaining experiments targeting NPC2s. Adopting different extraction and proteomic approaches, we identified a large number of proteins, and highlighted those differentially expressed. None of the 13 NPC2s known for this species was found. On the other hand, using immunocytochemistry, we detected reaction against one NPC2 in the Haller's organ and palp sensilla. We hypothesized that the low concentration of such proteins in the tick's tissues could possibly explain the discrepant results. In ligand-binding assays the corresponding recombinant NPC2 showed good affinity to the fluorescent probe N-phenylnaphthylamine and to few organic compounds, supporting a putative role of NPC2s as odorant carriers.
Collapse
Affiliation(s)
- Immacolata Iovinella
- Biology Department, University of Firenze, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Liping Ban
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Limei Song
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Paolo Pelosi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Francesca Romana Dani
- Biology Department, University of Firenze, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy; CISM, Mass Spectrometry Centre, University of Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|