1
|
Akizuki K, Ono A, Xue H, Kameshita I, Ishida A, Sueyoshi N. Biochemical characterization of four splice variants of mouse Ca2+/calmodulin-dependent protein kinase Iδ. J Biochem 2021; 169:445-458. [PMID: 33417706 DOI: 10.1093/jb/mvaa117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 11/12/2022] Open
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase Iδ (CaMKIδ) is a Ser/Thr kinase that plays pivotal roles in Ca2+ signalling. CaMKIδ is activated by Ca2+/CaM-binding and phosphorylation at Thr180 by CaMK kinase (CaMKK). In this study, we characterized four splice variants of mouse CaMKIδ (mCaMKIδs: a, b, c and d) found by in silico analysis. Recombinant mCaMKIδs expressed in Escherichia coli were phosphorylated by CaMKK; however, only mCaMKIδ-a and c showed protein kinase activities towards myelin basic protein in vitro, with mCaMKIδ-b and mCaMKIδ-d being inactive. Although mCaMKIδ-a and mCaMKIδ-c underwent autophosphorylation in vitro, only mCaMKIδ-c underwent autophosphorylation in 293T cells. Site-directed mutagenesis showed that the autophosphorylation site is Ser349, which is found in the C-terminal region of only variants c and b (Ser324). Furthermore, phosphorylation of these sites (Ser324 and Ser349) in mCaMKIδ-b and c was more efficiently catalyzed by cAMP-dependent protein kinase in vitro and in cellulo as compared to the autophosphorylation of mCaMKIδ-c. Thus, variants of mCaMKIδ possess distinct properties in terms of kinase activities, autophosphorylation and phosphorylation by another kinase, suggesting that they play physiologically different roles in murine cells.
Collapse
Affiliation(s)
- Kazutoshi Akizuki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan.,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.,Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Ayaka Ono
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Houcheng Xue
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa 761-0795, Japan
| |
Collapse
|
2
|
Osawa J, Akizuki K, Kashimura A, Ueta S, Nakatani M, Inui Y, Shigeri Y, Ishida A, Kameshita I, Sueyoshi N. Dual phosphorylation of protein phosphatase PPM1H promotes dephosphorylation of Smad1 in cellulo. Biochem Biophys Res Commun 2020; 530:513-519. [PMID: 32600616 DOI: 10.1016/j.bbrc.2020.05.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
Protein phosphatase PPM1H is known to participate in various biological or pathophysiological mechanisms. However, little is known about the molecular mechanisms of its regulation. In this study, we investigated the protein kinases that directly phosphorylate PPM1H, identifying them as cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase I (CaMKI). In vitro and in silico analyses showed that the phosphorylation sites of PPM1H by PKA and CaMKI were Ser-123 and Ser-210, respectively. The phosphorylation state of PPM1H in cells exhibited the kinase activator- and inhibitor-dependent changes. In mouse neuroblastoma Neuro2a cells, phosphorylation of Ser-210 was much higher in the phospho-mimetic mutant (S123D) than in the non-phosphorylatable mutant (S123A) when they were treated with ionomycin. This suggests that a hierarchical phosphorylation, with initial phosphorylation of Ser-123 promoting subsequent phosphorylation of Ser-210, occurs in these neuron-like cells. Moreover, in cell-based assay a PPM1H(S123A/S210A) double mutant barely dephosphorylated Smad1, a transcription factor known as an endogenous substrate of PPM1H. These results suggest that cAMP and Ca2+/calmodulin regulate dephosphorylation of Smad1 through the dual phosphorylation of PPM1H at Ser-123 and Ser-210.
Collapse
Affiliation(s)
- Jin Osawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Kazutoshi Akizuki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Akari Kashimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Saki Ueta
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Misato Nakatani
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Yuiko Inui
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Yasushi Shigeri
- Department of Chemistry, Wakayama Medical University, 580 Mikazura, Wakayama, 641-0011, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan.
| |
Collapse
|
3
|
Akizuki K, Kinumi T, Ono A, Senga Y, Osawa J, Shigeri Y, Ishida A, Kameshita I, Sueyoshi N. Autoactivation of C-terminally truncated Ca2+/calmodulin-dependent protein kinase (CaMK) Iδ via CaMK kinase-independent autophosphorylation. Arch Biochem Biophys 2019; 668:29-38. [DOI: 10.1016/j.abb.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 01/01/2023]
|
4
|
Akizuki K, Toyama T, Yamashita M, Sugiyama Y, Ishida A, Kameshita I, Sueyoshi N. Facile preparation of highly active casein kinase 1 using Escherichia coli constitutively expressing lambda phosphatase. Anal Biochem 2018; 549:99-106. [DOI: 10.1016/j.ab.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/27/2022]
|
5
|
Sugiyama Y, Yamashita S, Uezato Y, Senga Y, Katayama S, Goshima N, Shigeri Y, Sueyoshi N, Kameshita I. Phosphorylated TandeMBP: A unique protein substrate for protein phosphatase assay. Anal Biochem 2016; 513:47-53. [DOI: 10.1016/j.ab.2016.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|