1
|
Guard J. Through the Looking Glass: Genome, Phenome, and Interactome of Salmonella enterica. Pathogens 2022; 11:pathogens11050581. [PMID: 35631102 PMCID: PMC9144603 DOI: 10.3390/pathogens11050581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review revisits previous concepts on biological phenomenon contributing to the success of the Salmonella enterica subspecies I as a pathogen and expands upon them to include progress in epidemiology based on whole genome sequencing (WGS). Discussion goes beyond epidemiological uses of WGS to consider how phenotype, which is the biological character of an organism, can be correlated with its genotype to develop a knowledge of the interactome. Deciphering genome interactions with proteins, the impact of metabolic flux, epigenetic modifications, and other complex biochemical processes will lead to new therapeutics, control measures, environmental remediations, and improved design of vaccines.
Collapse
Affiliation(s)
- Jean Guard
- U. S. Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, 950 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
2
|
Lipopolysaccharide Transport System Links Physiological Roles of σ E and ArcA in the Cell Envelope Biogenesis in Shewanella oneidensis. Microbiol Spectr 2021; 9:e0069021. [PMID: 34406804 PMCID: PMC8552667 DOI: 10.1128/spectrum.00690-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The bacterial cell envelope is not only a protective structure that surrounds the cytoplasm but also the place where a myriad of biological processes take place. This multilayered complex is particularly important for electroactive bacteria such as Shewanella oneidensis, as it generally hosts branched electron transport chains and numerous reductases for extracellular respiration. However, little is known about how the integrity of the cell envelope is established and maintained in these bacteria. By tracing the synthetic lethal effect of Arc two-component system and σE in S. oneidensis, in this study, we identified the lipopolysaccharide transport (Lpt) system as the determining factor. Both Arc and σE, by regulating transcription of lptFG and lptD, respectively, are required for the Lpt system to function properly. The ArcA loss results in an LptFG shortage that triggers activation of σE and leads to LptD overproduction. LptFG and LptD at abnormal levels cause a defect in the lipopolysaccharide (LPS) transport, leading to cell death unless σE-dependent envelope stress response is in place. Overall, our report reveals for the first time that Arc works together with σE to maintain the integrity of the S. oneidensis cell envelope by participating in the regulation of the LPS transport system. IMPORTANCE Arc is a well-characterized global regulatory system that modulates cellular respiration by responding to changes in the redox status in bacterial cells. In addition to regulating expression of respiratory enzymes, Shewanella oneidensis Arc also plays a critical role in cell envelope integrity. The absence of Arc and master envelope stress response (ESR) regulator σE causes a synthetic lethal phenotype. Our research shows that the Arc loss downregulates lptFG expression, leading to cell envelope defects that require σE-mediated ESR for viability. The complex mechanisms revealed here underscore the importance of the interplay between global regulators in bacterial adaption to their natural inhabits.
Collapse
|
3
|
Yan K, Liu T, Duan B, Liu F, Cao M, Peng W, Dai Q, Chen H, Yuan F, Bei W. The CpxAR Two-Component System Contributes to Growth, Stress Resistance, and Virulence of Actinobacillus pleuropneumoniae by Upregulating wecA Transcription. Front Microbiol 2020; 11:1026. [PMID: 32528444 PMCID: PMC7255013 DOI: 10.3389/fmicb.2020.01026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the pathogen of porcine contagious pleuropneumonia. In A. pleuropneumoniae, the CpxAR two-component system is essential for fitness and growth. The O-antigen protrudes from the outer membrane to the exterior of the cell, and the outer membrane serves as a barrier that helps the bacteria to survive in harsh environments. WecA, a undecaprenyl phosphate GlcNAc-1-phosphate transferase, is involved in O-antigen repeating unit biosynthesis. In this study, we investigated the role of CpxAR in the expression of wecA in A. pleuropneumoniae. Our results revealed that CpxR positively regulates wecA expression by directly binding to the putative promoter region of wecA. Wild-type, ΔcpxAR, ΔwecA, and complemented strains were investigated under serum, oxidative, and osmotic stresses. The ΔcpxAR and ΔwecA strains were more susceptible to these stresses than the wild-type, but the complemented strains showed phenotypes similar to those of the wild-type. Mice infected with the ΔcpxAR and ΔwecA strains exhibited lower mortality and bacterial loads in the lung than those infected with the wild-type or complemented strains. This study reveals that the CpxAR two-component system contributes to A. pleuropneumoniae growth, stress resistance, and virulence, by upregulating expression of wecA. Our findings provide new insight into the pathogenesis of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ting Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Benzhen Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Manman Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qi Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Fernández PA, Velásquez F, Garcias-Papayani H, Amaya FA, Ortega J, Gómez S, Santiviago CA, Álvarez SA. Fnr and ArcA Regulate Lipid A Hydroxylation in Salmonella Enteritidis by Controlling lpxO Expression in Response to Oxygen Availability. Front Microbiol 2018; 9:1220. [PMID: 29937757 PMCID: PMC6002686 DOI: 10.3389/fmicb.2018.01220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Lipid A is the bioactive component of lipopolysaccharide, and presents a dynamic structure that undergoes modifications in response to environmental signals. Many of these structural modifications influence Salmonella virulence. This is the case of lipid A hydroxylation, a modification catalyzed by the dioxygenase LpxO. Although it has been established that oxygen is required for lipid A hydroxylation acting as substrate of LpxO in Salmonella, an additional regulatory role for oxygen in lpxO expression has not been described. The existence of this regulation could be relevant considering that Salmonella faces low oxygen tension during infection. This condition leads to an adaptive response by changing the expression of numerous genes, and transcription factors Fnr and ArcA are major regulators of this process. In this work, we describe for the first time that lipid A hydroxylation and lpxO expression are modulated by oxygen availability in Salmonella enterica serovar Enteritidis (S. Enteritidis). Biochemical and genetic analyses indicate that this process is regulated by Fnr and ArcA controlling the expression of lpxO. In addition, according to our results, this regulation occurs by direct binding of both transcription factors to specific elements present in the lpxO promoter region. Altogether, our observations revealed a novel role for oxygen acting as an environment signal controlling lipid A hydroxylation in S. Enteritidis.
Collapse
Affiliation(s)
- Paulina A Fernández
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Felipe Velásquez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Héctor Garcias-Papayani
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Fernando A Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jaime Ortega
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Sebastián Gómez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Sergio A Álvarez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|