1
|
Aguilar‐Chaparro MA, Rivera‐Pineda SA, Hernández‐Galdámez HV, Ríos‐Castro E, Garibay‐Cerdenares OL, Piña‐Vázquez C, Villa‐Treviño S. Transforming Growth Factor-β Modulates Cancer Stem Cell Traits on CD44 Subpopulations in Hepatocellular Carcinoma. J Cell Biochem 2025; 126:e70003. [PMID: 39943801 PMCID: PMC11833284 DOI: 10.1002/jcb.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/29/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is a formidable malignancy, with growing interest in identifying cancer stem cells (CSCs) as potential therapeutic targets. CD44 isoforms have emerged as promising CSC markers in HCC, often associated with epithelial-mesenchymal transition (EMT) induced by transforming growth factor-beta (TGF-β). However, the intricate relationship between CSC traits, CD44 isoforms, and TGF-β effects on CD44 subpopulations in HCC remains unclear. This study aimed to clarify how TGF-β influences proteomic changes and CSC traits in subpopulations expressing standard CD44 isoform (CD44std) and CD44 variant 9 (CD44v9). Treating SNU-423 cells with TGF-β lead to notable morphological changes, resembling a spindle-like phenotype, along with reductions in CD44v9+ subpopulations and differential CD44std expression. Proteomic analysis highlighted significant alterations in signaling pathways, particularly the mitogen-activated protein kinase (MAPK) pathway. Validation experiments demonstrated upregulation in CD44std cells and downregulation in CD44v9 cells post-TGF-β treatment. Furthermore, TGF-β exerted regulatory influence over Sox2 and Nanog expression, resulting in increased colony and spheroid formation in CD44std cells but decreased capabilities in CD44v9 cells. TGF-β also enhanced the migratory and invasive properties of both subpopulations through EMT, alongside increased adhesive abilities in CD44v9 cells. These findings illuminate the dynamic interplay between TGF-β and CD44std/CD44v9 subpopulations, emphasizing the role of MAPK signaling and modulation of CSC traits. This research contributes to understanding the dynamic interplay between CD44 isoforms and TGF-β in HCC.
Collapse
Affiliation(s)
| | - Sonia Andrea Rivera‐Pineda
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)México CityMéxico
| | | | - Emmanuel Ríos‐Castro
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y Estudios Avanzados del IPNCiudad de MéxicoMéxico
| | | | - Carolina Piña‐Vázquez
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)México CityMéxico
| | - Saúl Villa‐Treviño
- Departamento de Biología CelularCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV)México CityMéxico
| |
Collapse
|
2
|
Amofa KY, Patterson KM, Ortiz J, Kumar S. Dissecting TGF-β-induced glioblastoma invasion with engineered hyaluronic acid hydrogels. APL Bioeng 2024; 8:026125. [PMID: 38894960 PMCID: PMC11184968 DOI: 10.1063/5.0203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Glioma stem cells (GSCs) contribute to rapid cellular invasion in glioblastoma (GBM). Transforming growth factor-β (TGF-β) has been strongly implicated in supporting key GSC functions, including stemness, immunosuppression, and resistance. Although TGF-β is well-known as a driver of cancer invasion, how TGF-β supports the invasion of GSCs is not well understood. Progress in understanding mechanisms of TGF-β-driven invasion in GSC-derived tumors has been limited by an absence of three-dimensional (3D) culture systems that support TGF-β-stimulated invasion. Here, we show that 3D hyaluronic acid (HA) matrices can address this need. We perform bioinformatic analysis of human glioma datasets, which reveals progressive enrichment of TGF-β-related gene expression with increasingly aggressive glioma grade and GBM subtype. We then experimentally screen the invasion of a panel of human GSC spheroids through a set of 3D matrix systems, including collagen I, Matrigel, and HA, and find that only HA recapitulates TGF-β-induced invasion. We then show that GSCs differ in their ability to invade HA in a way that can be predicted from TGF-β receptor 2 expression and SMAD2 phosphorylation. GSC spheroid invasion depends strongly on the presence of RGD peptides on the HA backbone but is surprisingly independent of matrix metalloprotease degradability. Finally, we demonstrate that TGF-β stimulates invasion through SMAD-dependent signaling, consistent with recent observations that TGF-β/SMAD signals drive tumor microtube formation and invasion. Our work supports further development of HA as a matrix platform for dissecting contributions of TGF-β and other cytokines to GBM invasion and screening of cytokine-dependent invasion in human tumors.
Collapse
Affiliation(s)
| | | | | | - Sanjay Kumar
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Zhao H, Ling Y, He J, Dong J, Mo Q, Wang Y, Zhang Y, Yu H, Tang C. Potential targets and therapeutics for cancer stem cell-based therapy against drug resistance in hepatocellular carcinoma. Drug Resist Updat 2024; 74:101084. [PMID: 38640592 DOI: 10.1016/j.drup.2024.101084] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common digestive malignancyin the world, which is frequently diagnosed at late stage with a poor prognosis. For most patients with advanced HCC, the therapeutic options arelimiteddue to cancer occurrence of drug resistance. Hepatic cancer stem cells (CSCs) account for a small subset of tumor cells with the ability of self-renewal and differentiationin HCC. It is widely recognized that the presence of CSCs contributes to primary and acquired drug resistance. Therefore, hepatic CSCs-targeted therapy is considered as a promising strategy to overcome drug resistance and improve therapeutic outcome in HCC. In this article, we review drug resistance in HCC and provide a summary of potential targets for CSCs-based therapy. In addition, the development of CSCs-targeted therapeuticsagainst drug resistance in HCC is summarized in both preclinical and clinical trials. The in-depth understanding of CSCs-related drug resistance in HCC will favor optimization of the current therapeutic strategies and gain encouraging therapeutic outcomes.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Radiology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yuhang Ling
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jie He
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jinling Dong
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Qinliang Mo
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yao Wang
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Ying Zhang
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Hongbin Yu
- Department of General Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Sarkar S, Kar A, Shaw P, DasGupta B, Keithellakpam OS, Mukherjee PK, Bhardwaj PK, Sharma N, Haldar PK, Sinha S. Hydroalcoholic root extracts of Houttuynia cordata (Thunb.) standardized by UPLC-Q-TOF-MS/MS promotes apoptosis in human hepatocarcinoma cell HepG2 via GSK-3β/β-catenin/PDL-1 axis. Fitoterapia 2023; 171:105684. [PMID: 37751799 DOI: 10.1016/j.fitote.2023.105684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Houttuynia cordata (Thunb.), an important medicinal plant of Northeast India, Korea, and China, is used to treat various ailments and for anticancer research. Knowing its traditional practices, we are interested in the mode-of-action of HCT on HepG2 to co-relate the traditional practice with modern drug therapeutics. UPLC-Q-ToF-Ms analysis of HCT reveals identification of 14 metabolites. Network pharmacology analysis of the 14 compounds showed interaction with 232 different targets with their potential involvement in hepatocellular carcinoma. Whole extracts impart cytotoxicity on variety of cell lines including HepG2. There was a significant morphological alteration in treated HepG2 cells due to impairment of cytoskeletal components like β and γ- tubulin. Arrest at G1-S checkpoint was clearly indicated downregulation of Cyclin D1. The root extracts actuated apoptosis in HepG2 as evident from altered mitochondrial membrane potential, Annexin V- FITC, BrdU-PI, AO/EtBr assays, and modulations of apoptotic protein expression but without ROS generation. Whole extracts caused abrogation of epithelial to mesenchymal transition with repression of Snail, N-Cadherin, Vimentin, MMP-9, and upregulation of Pan-Cadherin. Pathway analysis found GSK-3β in Wnt/β-Catenin signaling cascade to be involved through Hepatocellular carcinoma (hsa05225) pathway. The GSK-3β/β-Catenin/PDL-1 signaling was found to be inhibited with the downregulation of pathway components. This was further confirmed by application of EGF, an inducer of the GSK-3β/β-Catenin pathway that neutralized the effect of Houttuynia cordata (Thunb.) root extract on the said pathway. Network pharmacology analysis also confirms the synergy network with botanical-bioactive-target-disease which showed Kaempferol to have the highest degree of association with the said pathway.
Collapse
Affiliation(s)
- Sudipta Sarkar
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab Shaw
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India
| | - Barun DasGupta
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Ojit Singh Keithellakpam
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India.
| | - Pardeep K Bhardwaj
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Ministry of Science and Technology, Govt. of India, Takyelpat, Imphal 795001, India
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata 700032, INDIA
| | - Surajit Sinha
- Indian Association for the Cultivation of Science, School of Applied and Interdisciplinary Sciences, Kolkata 700032, India.
| |
Collapse
|
5
|
Aguilar-Chaparro MA, Rivera-Pineda SA, Hernández-Galdámez HV, Piña-Vázquez C, Villa-Treviño S. The CD44std and CD44v9 subpopulations in non-tumorigenic invasive SNU-423 cells present different features of cancer stem cells. Stem Cell Res 2023; 72:103222. [PMID: 37844417 DOI: 10.1016/j.scr.2023.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer, in which CD44 isoforms have been proposed as markers to identify cancer stem cells (CSCs). However, it is unclear what characteristics are associated with CSCs that exclusively express CD44 isoforms. The objective of the present study was to determine the expression of CD44 isoforms and their properties in CSCs. Analysis of transcriptomic data from HCC patient samples identified CD44v8-10 as a potential marker in HCC. In SNU-423 cells, CD44 expression was detected in over 99% of cells, and two CD44 isoforms, namely, CD44std and CD44v9, were identified in this cell line. CD44 subpopulations, including both CD44v9+ (CD44v9) and CD44v9- (CD44std) cells, were obtained by purification using a magnetic cell separation kit for human CD44v9+ cancer stem cells. CD44v9 cells showed greater potential for colony and spheroid formation, whereas CD44std cells demonstrated significant migration and invasion capabilities. These findings suggested that CD44std and CD44v9 may be used to identify features in CSC populations and provide insights into their roles in HCC.
Collapse
Affiliation(s)
- Mario Alejandro Aguilar-Chaparro
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Sonia Andrea Rivera-Pineda
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Hury Viridiana Hernández-Galdámez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico.
| |
Collapse
|
6
|
Fu Y, Zha J, Wu Q, Tang Y, Wang W, Zhou Q, Jiang L. Stromal micropapillary pattern and CD44s expression predict worse outcome in lung adenocarcinomas with micropapillary pattern. Pathol Res Pract 2023; 248:154595. [PMID: 37343380 DOI: 10.1016/j.prp.2023.154595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES This study aims to investigate the clinicopathologic characteristics of lung adenocarcinoma with micropapillary pattern (MPP) and the expression of CD44s and CD44v6 in MPP. METHODS A total of 202 patients diagnosed with primary lung adenocarcinoma with MPP were included. We estimated the proportion of MPP in each tumor tissue and divided MPP into aerogenous micropapillary pattern (AMP) and stromal micropapillary pattern (SMP). The expression of CD44s and CD44v6 was estimated by immunohistochemical staining. Clinicopathologic data were collected from the patients' medical records. We also collected patients' follow-up data and used PFS (progression-free survival) as a survival indicator. RESULTS Lung adenocarcinoma with MPP had a high risk of pleural invasion, lymph node metastasis, in advanced TNM stage, and a high rate of EGFR mutation. The presence of SMP indicated a higher rate of pleural invasion, lymphovascular invasion, lymph node metastasis, and a worse PFS compared with pure AMP. We found high expression of CD44s in micropapillary, especially in AMP, while the absence of CD44s expression indicated shorter survival, which was an independent unfavorable factor for PFS. CONCLUSIONS Lung adenocarcinoma with micropapillary pattern indicated an unfavorable prognosis, which had two different pattens, AMP and SMP. SMP indicated a worse survival than AMP, and was an independent unfavorable factor for PFS. So, AMP/SMP subclassification is necessary to evaluate patient's prognosis. Furthermore, the absent expression of CD44s in micropapillary indicated shorter survival, especially in patients with EGFR mutation. Herein, CD44s may be a biological marker for micropapillary lung adenocarcinoma.
Collapse
Affiliation(s)
- Yiyun Fu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Junmei Zha
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Wu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2202118. [PMID: 36373221 PMCID: PMC11469756 DOI: 10.1002/adhm.202202118] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a dynamic and complex matter shaped by heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA) is a major TME component that plays pro-tumorigenic and carcinogenic functions. These functions are mediated by different hyaladherins expressed by cancer and tumor-associated cells triggering downstream signaling pathways that determine cell fate and contribute to TME progression toward a carcinogenic state. Here, the interaction of HA is reviewed with several cell-surface hyaladherins-CD44, RHAMM, TLR2 and 4, LYVE-1, HARE, and layilin. The signaling pathways activated by these interactions and the respective response of different cell populations within the TME, and the modulation of the TME, are discussed. Potential cancer therapies via targeting these interactions are also briefly discussed.
Collapse
Affiliation(s)
- Ana M. Carvalho
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Rui L. Reis
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Iva Pashkuleva
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| |
Collapse
|
8
|
Zhou XH, Li JR, Zheng TH, Chen H, Cai C, Ye SL, Gao B, Xue TC. Portal vein tumor thrombosis in hepatocellular carcinoma: molecular mechanism and therapy. Clin Exp Metastasis 2023; 40:5-32. [PMID: 36318440 DOI: 10.1007/s10585-022-10188-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Portal vein tumor thrombosis (PVTT), a common complication of advanced hepatocellular carcinoma (HCC), remains the bottleneck of the treatments. Liver cancer cells potentially experienced multi-steps during PVTT process, including cancer cells leave from cancer nest, migrate in extracellular matrix, invade the vascular barrier, and colonize in the portal vein. Accumulated evidences have revealed numerous of molecular mechanisms including genetic and epigenetic regulation, cancer stem cells, immunosuppressive microenvironment, hypoxia, et al. contributed to the PVTT formation. In this review, we discuss state-of-the-art PVTT research on the potential molecular mechanisms and experimental models. In addition, we summarize PVTT-associated clinical trials and current treatments for PVTT and suppose perspectives exploring the molecular mechanisms and improving PVTT-related treatment for the future.
Collapse
Affiliation(s)
- Xing-Hao Zhou
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Jing-Ru Li
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Tang-Hui Zheng
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Hong Chen
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Chen Cai
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Sheng-Long Ye
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai Medical College, Shanghai, 200032, China.
| | - Tong-Chun Xue
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China. .,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Jeng KS, Chang CF, Sheen IS, Jeng CJ, Wang CH. Cellular and Molecular Biology of Cancer Stem Cells of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:1417. [PMID: 36674932 PMCID: PMC9861908 DOI: 10.3390/ijms24021417] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death globally. The cancer stem cells (CSCs) of HCC are responsible for tumor growth, invasion, metastasis, recurrence, chemoresistance, target therapy resistance and radioresistance. The reported main surface markers used to identify liver CSCs include epithelial cell adhesion/activating molecule (EpCAM), cluster differentiation 90 (CD90), CD44 and CD133. The main molecular signaling pathways include the Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog (SHH), PI3K/Akt/mTOR and Notch. Patients with EpCAM-positive alpha-fetoprotein (AFP)-positive HCC are usually young but have advanced tumor-node-metastasis (TNM) stages. CD90-positive HCCs are usually poorly differentiated with worse prognosis. Those with CD44-positive HCC cells develop early metastases. Those with CD133 expression have a higher recurrence rate and a shorter overall survival. The Wnt/β-catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through the enhancement of angiogenic factors. All CD133+ liver CSCs, CD133+/EpCAM+ liver CSCs and CD44+ liver CSCs contribute to sorafenib resistance. SHH signaling could protect HCC cells against ionizing radiation in an autocrine manner. Reducing the CSC population of HCC is crucial for the improvement of the therapy of advanced HCC. However, targeting CSCs of HCC is still challenging.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - I-Shyang Sheen
- Department of Hepato Gastroenterology, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan
| | - Chi-Juei Jeng
- Postgraduate of Institute of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| |
Collapse
|
10
|
Li L, Xun C, Yu CH. Role of microRNA-regulated cancer stem cells in recurrent hepatocellular carcinoma. World J Hepatol 2022; 14:1985-1996. [PMID: 36618329 PMCID: PMC9813843 DOI: 10.4254/wjh.v14.i12.1985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Among the most common cancers, hepatocellular carcinoma (HCC) has a high rate of tumor recurrence, tumor dormancy, and drug resistance after initial successful chemotherapy or radiotherapy. A small subset of cancer cells, cancer stem cells (CSCs), exhibit stem cell characteristics and are present in various cancers, including HCC. The dysregulation of microRNAs (miRNAs) often accompanies the occurrence and development of HCC. miRNAs can influence tumorigenesis, progression, recurrence, and drug resistance by regulating CSCs properties, which supports their clinical utility in managing and treating HCC. This review summarizes the regulatory effects of miRNAs on CSCs in HCC with a special focus on their impact on HCC recurrence.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Chen Xun
- Department of Hepatobiliary Surgery, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| | - Chun-Hong Yu
- School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
11
|
Cancer Stem Cells in Hepatocellular Carcinoma: Intrinsic and Extrinsic Molecular Mechanisms in Stemness Regulation. Int J Mol Sci 2022; 23:ijms232012327. [PMID: 36293184 PMCID: PMC9604119 DOI: 10.3390/ijms232012327] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the most predominant type of liver cancer with an extremely poor prognosis due to its late diagnosis and high recurrence rate. One of the culprits for HCC recurrence and metastasis is the existence of cancer stem cells (CSCs), which are a small subset of cancer cells possessing robust stem cell properties within tumors. CSCs play crucial roles in tumor heterogeneity constitution, tumorigenesis, tumor relapse, metastasis, and resistance to anti-cancer therapies. Elucidation of how these CSCs maintain their stemness features is essential for the development of CSCs-based therapy. In this review, we summarize the present knowledge of intrinsic molecules and signaling pathways involved in hepatic CSCs, especially the CSC surface markers and associated signaling in regulating the stemness characteristics and the heterogeneous subpopulations within the CSC pool. In addition, we recapitulate the effects of crucial extrinsic cellular components in the tumor microenvironment, including stromal cells and immune cells, on the modulation of hepatic CSCs. Finally, we synopsize the currently valuable CSCs-targeted therapy strategies based on intervention in these intrinsic and extrinsic molecular mechanisms, in the hope of shedding light on better clinical management of HCC patients.
Collapse
|
12
|
Park NR, Cha JH, Sung PS, Jang JW, Choi JY, Yoon SK, Bae SH. MiR-23b-3p suppresses epithelial-mesenchymal transition, migration, and invasion of hepatocellular carcinoma cells by targeting c-MET. Heliyon 2022; 8:e11135. [PMID: 36281372 PMCID: PMC9586913 DOI: 10.1016/j.heliyon.2022.e11135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aberrant expression of c-MET is known to be associated with tumor recurrence and metastasis by promoting cell proliferation, epithelial-mesenchymal transition (EMT), and migration in hepatocellular carcinoma (HCC). Recently, miR-23b-3p has been identified as a tumor suppressor, but detailed role of miR-23b-3p in HCC is still unclear. Our study aimed to investigate how miR-23b-3p is associated with the malignant potential of HCC cells. METHODS HCC tissues and their adjacent non-tumor tissues were acquired from 30 patients with HCC. Expression of EMT- or stemness-related genes were examined in the two HCC cell lines. Migration of HCC cells was analyzed using transwell and wound healing assays. RESULTS c-MET was overexpressed in HCC tissues compared to the adjacent non-tumor tissues. c-MET knockdown inhibited EMT and reduced migration and invasion of HCC cells. Furthermore, c-MET was a target of miR-23b-3p, and miR-23b-3p expression was decreased in HCC tissues compared to non-tumor tissues. Treatment of miR-23b-3p inhibitor in HCC cells promoted EMT, cell migration, and invasion. In contrast, miR-23b-3p overexpression suppressed EMT, cell migration, and invasion, concomitantly reducing c-MET expression. Transfection of miR-23b-3p inhibitor with concomitant c-MET knockdown mitigated the effects of miR-23b-3p inhibitor on EMT in HCC cells. In addition, transforming growth factor beta1 (TGF-β1) stimulation after miR-23b-3p overexpression induced neither the mesenchymal phenotype nor migratory property of HCC cells. CONCLUSION In this study, we confirmed that miR-23b-3p downregulation significantly increased EMT, migration, and invasion of HCC cells. In addition, c-MET was confirmed to be a target of miR-23b-3p in HCC cells and regulated the functional effects of miR-23b-3p. These results suggest that miR-23b-3p can be used as a prognostic biomarker and candidate target for HCC treatment.
Collapse
Affiliation(s)
- Na Ri Park
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jung Hoon Cha
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, 03382, Republic of Korea
| |
Collapse
|
13
|
Wu CF, Wu CY, Lin CF, Liu YW, Lin TC, Liao HJ, Chang GR. The anticancer effects of cyanidin 3-O-glucoside combined with 5-fluorouracil on lung large-cell carcinoma in nude mice. Biomed Pharmacother 2022; 151:113128. [PMID: 35609368 DOI: 10.1016/j.biopha.2022.113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
The haskap (Lonicera caerulea L., Caprifoliaceae) berry has been widely used in traditional medicine in Kuril Islands, Russia, Japan, and China. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin in haskap berries, and C3G induces antiproliferative pharmacological activity in various cancer cells. However, no study has investigated its anti-lung large-cell carcinoma (LCC) pharmacological role. Therefore, this study determined whether C3G alone or C3G combined with 5-fluorouracil (5-FU) inhibits human lung LCC. We determined the tumor growth, apoptosis, inflammation, and metastasis in the H661 lung LCC lines xenografted into BALB/c nude mice. The mice were administered saline (control), 5-FU, C3G, or both C3G and 5-FU. Relative to the control mice, those treated with C3G alone or both C3G and 5-FU exhibited impaired tumor growth; increased tumor apoptosis; decreased inflammatory cytokine levels (e.g., IL-1β, TNF-α, C-reactive protein, and IL-6); decreased inflammation-related factors, including cyclooxygenase-2 protein and nuclear factor-κB (NF-κB) mRNA; increased inhibition of NF-κB kinase α mRNA; and downregulated metastasis-related factors, such as transforming growth factor-β, CD44, epidermal growth factor receptor, and vascular endothelial growth factor. In addition, C3G alone or combined with 5-FU affected the expression of the tumor microenvironment-related factors Ki67, CD45, PDL1, and CD73. Compared with the mice treated with 5-FU or C3G alone, those treated with both C3G and 5-FU exhibited significantly impaired tumor growth, decreased tumor sizes, and increased tumor inhibition. This in vivo study demonstrated that C3G alone or combined with 5-FU may impair the growth of lung LCC and inhibit tumorigenesis. The findings indicate that C3G alone or C3G combined with 5-FU may be beneficial for treating human lung LCC.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Guishan, 259 Wenhua 1st Road, Taoyuan 33302, Taiwan.
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan.
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, 300 Syuefu Road, Chiayi 60004, Taiwan.
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan.
| |
Collapse
|
14
|
Mechanisms of chronic alcohol exposure-induced aggressiveness in cellular model of HCC and recovery after alcohol withdrawal. Cell Mol Life Sci 2022; 79:366. [PMID: 35713728 PMCID: PMC9205837 DOI: 10.1007/s00018-022-04387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
Alcohol-related liver disease is the most prevalent chronic liver disease worldwide, accounting for 30% of hepatocellular carcinoma (HCC) cases and HCC-specific deaths. However, the knowledge on mechanisms by which alcohol consumption leads to cancer progression and its aggressiveness is limited. Better understanding of the clinical features and the mechanisms of alcohol-induced HCC are of critical importance for prevention and the development of novel treatments. Early stage Huh-7 and advanced SNU449 liver cancer cell lines were subjected to chronic alcohol exposure (CAE), at different doses for 6 months followed by 1-month alcohol withdrawal period. ADH activity and ALDH expression were much lower in SNU449 compared with Huh-7 cells and at the 270 mM dose, CAE decreased cell viability by about 50% and 80%, respectively, in Huh-7 and SNU449 cells but induced mortality only in Huh-7 cells. Thus, Huh-7 may be more vulnerable to ethanol toxicity because of the higher levels of acetaldehyde. CAE induced a dose-dependent increase in cell migration and invasion and also in the expression of cancer stem cells markers (CD133, CD44, CD90). CAE in Huh-7 cells selectively activated ERK1/2 and inhibited GSK3β signaling pathways. Most of the changes induced by CAE were reversed after alcohol withdrawal. Interestingly, we confirmed the increase in CD133 mRNA levels in the tumoral tissue of patients with ethanol-related HCC compared to other HCC etiologies. Our results may explain the benefits observed in epidemiological studies showing a significant increase of overall survival in abstinent compared with non-abstinent patients.
Collapse
|
15
|
Lyu J, Cheng C. Regulation of Alternative Splicing during Epithelial-Mesenchymal Transition. Cells Tissues Organs 2022; 211:238-251. [PMID: 34348273 PMCID: PMC8741878 DOI: 10.1159/000518249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
Alternative splicing is an essential mechanism of gene regulation, giving rise to remarkable protein diversity in higher eukaryotes. Epithelial-mesenchymal transition (EMT) is a developmental process that plays an essential role in metazoan embryogenesis. Recent studies have revealed that alternative splicing serves as a fundamental layer of regulation that governs cells to undergo EMT. In this review, we summarize recent findings on the functional impact of alternative splicing in EMT and EMT-associated activities. We then discuss the regulatory mechanisms that control alternative splicing changes during EMT.
Collapse
Affiliation(s)
- Jingyi Lyu
- Lester and Sue Smith Breast Center, Department of Molecular
& Human Genetics, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA,Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular
& Human Genetics, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA,Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX 77030, USA.,To whom correspondence should be addressed:
| |
Collapse
|
16
|
Chang GR, Kuo CY, Tsai MY, Lin WL, Lin TC, Liao HJ, Chen CH, Wang YC. Anti-Cancer Effects of Zotarolimus Combined with 5-Fluorouracil Treatment in HCT-116 Colorectal Cancer-Bearing BALB/c Nude Mice. Molecules 2021; 26:molecules26154683. [PMID: 34361836 PMCID: PMC8347948 DOI: 10.3390/molecules26154683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/05/2023] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and an inhibitor of mammalian target of rapamycin (mTOR) signaling. Currently, zotarolimus is used to prolong the survival time of organ grafts, but it is also a novel immunosuppressive agent with potent anti-proliferative activity. Here, we examine the anti-tumor effect of zotarolimus, alone and in combination with 5-fluorouracil, on HCT-116 colorectal adenocarcinoma cells implanted in BALB/c nude mice. Compared with the control mice, mice treated with zotarolimus or zotarolimus combined with 5-FU showed retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; reduced inflammation-related factors such as IL-1β, TNF-α, and cyclooxygenase-2 (COX-2) protein; and inhibited metastasis-related factors such as CD44, epidermal growth factor receptor (EGFR), transforming growth factor β (TGF-β), and vascular endothelial growth factor (VEGF). Notably, mice treated with a combination of zotarolimus and 5-FU showed significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with mice treated with 5-FU or zotarolimus alone, indicating a strong synergistic effect. This in vivo study confirms that zotarolimus or zotarolimus combined with 5-FU can be used to retard colorectal adenocarcinoma growth and inhibit tumorigenesis. Our results suggest that zotarolimus may increase the chemo-sensitization of tumor cells. Therefore, zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents in the treatment of human colon adenocarcinoma. Future research on zotarolimus may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei 231405, Taiwan;
- Department of Nursing, Cardinal Tien College of Healthcare and Management, 112 Minzu Road, Sindian District, New Taipei 231038, Taiwan
| | - Ming-Yang Tsai
- Animal Industry Division, Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua Dist, Tainan 71246, Taiwan;
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan;
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Chung-Hung Chen
- Division of Gastroenterology, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 505029, Taiwan
- Correspondence: (C.-H.C.); (Y.-C.W.); Tel.: +886-975-617357 (C.-H.C.); +886-2332-3456 (Y.-C.W.)
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 413505, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 413305, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
- Correspondence: (C.-H.C.); (Y.-C.W.); Tel.: +886-975-617357 (C.-H.C.); +886-2332-3456 (Y.-C.W.)
| |
Collapse
|
17
|
Lv D, Chen L, Du L, Zhou L, Tang H. Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:691410. [PMID: 34368140 PMCID: PMC8339910 DOI: 10.3389/fcell.2021.691410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide. A growing body of evidence supports the hypothesis that HCC is driven by a population of cells called liver cancer stem cells (LCSCs). LCSCs have been proposed to contribute to malignant HCC progression, including promoting tumor occurrence and growth, mediating tumor metastasis, and treatment resistance, but the regulatory mechanism of LCSCs in HCC remains unclear. Understanding the signaling pathways responsible for LCSC maintenance and survival may provide opportunities to improve patient outcomes. Here, we review the current literature about the origin of LCSCs and the niche composition, describe the current evidence of signaling pathways that mediate LCSC stemness, then highlight several mechanisms that modulate LCSC properties in HCC progression, and finally, summarize the new developments in therapeutic strategies targeting LCSCs markers and regulatory pathways.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Center of Infectious Diseases, Division of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11:25228-25257. [PMID: 35478899 PMCID: PMC9037120 DOI: 10.1039/d1ra03979b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
The indazole core is an interesting pharmacophore due to its applications in medicinal chemistry. In the past few years, this moiety has been used for the synthesis of kinase inhibitors. Many researchers have demonstrated the use of indazole derivatives as specific kinase inhibitors, including tyrosine kinase and serine/threonine kinases. A number of anticancer drugs with an indazole core are commercially available, e.g. axitinib, linifanib, niraparib, and pazopanib. Indazole derivatives are applied for the targeted treatment of lung, breast, colon, and prostate cancers. In this review, we compile the current development of indazole derivatives as kinase inhibitors and their application as anticancer agents in the past five years.
Collapse
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Divya Kant
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
19
|
Chen D, Yan Y, Wang X, Li S, Liu Y, Yu D, He Y, Deng R, Liu Y, Xu M, Luo J, Gao H, Wang S. Chronic alcohol exposure promotes HCC stemness and metastasis through β-catenin/miR-22-3p/TET2 axis. Aging (Albany NY) 2021; 13:14433-14455. [PMID: 34019487 PMCID: PMC8202861 DOI: 10.18632/aging.203059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/13/2021] [Indexed: 04/16/2023]
Abstract
Hepatocellular Carcinoma (HCC) patients usually have a high rate of relapse and metastasis. Alcohol, a risk factor for HCC, promotes the aggressiveness of HCC. However, the basic mechanism is still unclear. We used HCC cells and an orthotopic liver tumor model of HCC-LM3 cells for BALB/C nude mice to study the mechanism of alcohol-induced HCC progression. We showed that chronic alcohol exposure promoted HCC cells metastasis and pulmonary nodules formation. First, we identified miR-22-3p as an oncogene in HCC, which promoted HCC cells stemness, tumor growth, and metastasis. Further, we found that miR-22-3p directly targeted TET2 in HCC. TET2, a dioxygenase involved in cytosine demethylation, has pleiotropic roles in hematopoietic stem cells self-renewal. In clinic HCC specimen, TET2 expression was not only decreased by alcohol consumption, but also inversely correlated with miR-22-3p levels. Then, we demonstrated that TET2 depletion promoted HCC cells stemness, tumor growth and metastasis. Furthermore, we identified that β-catenin was an upstream activator of miR-22-3p. In conclusion, this study suggests that chronic alcohol exposure promotes HCC progression and β-catenin/miR-22-3p/TET2 regulatory axis plays an important role in alcohol-promoted HCC malignancy.
Collapse
Affiliation(s)
- Danlei Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yan Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xinyi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Pulmonary Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Fengtai, Beijing 100071, China
| | - Suzhi Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Dandan Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yongjing He
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ruiqing Deng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yakun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hongjun Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
- Department of Pulmonary Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Fengtai, Beijing 100071, China
| | - Siying Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| |
Collapse
|
20
|
Reungoat E, Grigorov B, Zoulim F, Pécheur EI. Molecular Crosstalk between the Hepatitis C Virus and the Extracellular Matrix in Liver Fibrogenesis and Early Carcinogenesis. Cancers (Basel) 2021; 13:cancers13092270. [PMID: 34065048 PMCID: PMC8125929 DOI: 10.3390/cancers13092270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In the era of direct-acting antivirals against the hepatitis C virus (HCV), curing chronic hepatitis C has become a reality. However, while replicating chronically, HCV creates a peculiar state of inflammation and oxidative stress in the infected liver, which fuels DNA damage at the onset of HCV-induced hepatocellular carcinoma (HCC). This cancer, the second leading cause of death by cancer, remains of bad prognosis when diagnosed. This review aims to decipher how HCV durably alters elements of the extracellular matrix that compose the liver microenvironment, directly through its viral proteins or indirectly through the induction of cytokine secretion, thereby leading to liver fibrosis, cirrhosis, and, ultimately, HCC. Abstract Chronic infection by the hepatitis C virus (HCV) is a major cause of liver diseases, predisposing to fibrosis and hepatocellular carcinoma. Liver fibrosis is characterized by an overly abundant accumulation of components of the hepatic extracellular matrix, such as collagen and elastin, with consequences on the properties of this microenvironment and cancer initiation and growth. This review will provide an update on mechanistic concepts of HCV-related liver fibrosis/cirrhosis and early stages of carcinogenesis, with a dissection of the molecular details of the crosstalk during disease progression between hepatocytes, the extracellular matrix, and hepatic stellate cells.
Collapse
|
21
|
Mo G, Zhang B, Jiang Q. Role of ARK5 in cancer and other diseases (Review). Exp Ther Med 2021; 22:697. [PMID: 33986861 PMCID: PMC8112134 DOI: 10.3892/etm.2021.10129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors are often exposed to hypoxic and glucose-starved microenvironments. AMP-activated protein kinase (AMPK) is an energy sensor that is stimulated during energy-deficient conditions and protects cells from hypoxic injury by regulating metabolism. AMPK-related protein kinase 5 (ARK5) is a member of the catalytic sub-unit of the AMPK family and has an important role in energy regulation and hypoxia. ARK5 is regulated by Akt and liver kinase B1 and is associated with numerous tumor-related molecules to exert the negative effects of tumors. Studies have revealed ARK5 overexpression in cases of tumor invasion and metastasis and a positive association with the degree of cancer cell malignancy, which is regarded as a key element in determining cancer prognosis. Furthermore, ARK5 downregulation improves drug sensitivity through the epithelial-mesenchymal transition pathway, indicating that it may be a potential therapeutic target. In other non-cancer conditions, ARK5 has various roles in neurodegenerative diseases (Alzheimer's and Huntington's disease), renal disorders (diabetic nephropathy and renal fibrosis) and physiological processes (striated muscle generation). In the present review, the upstream and downstream molecular pathways of ARK5 in cancer and other diseases are described and potential therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Guoheng Mo
- Department of Neurosurgery, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bohan Zhang
- First Clinical Medical College, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Wu CF, Wu CY, Chiou RYY, Yang WC, Lin CF, Wang CM, Hou PH, Lin TC, Kuo CY, Chang GR. The Anti-Cancer Effects of a Zotarolimus and 5-Fluorouracil Combination Treatment on A549 Cell-Derived Tumors in BALB/c Nude Mice. Int J Mol Sci 2021; 22:4562. [PMID: 33925400 PMCID: PMC8123799 DOI: 10.3390/ijms22094562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.
Collapse
Affiliation(s)
- Ching-Feng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Ching-Yang Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou, 5 Fuxing Street, Guishan District, Taoyuan 33305, Taiwan; (C.-F.W.); (C.-Y.W.)
| | - Robin Y.-Y. Chiou
- Department of Food Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan;
| | - Wei-Cheng Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan;
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei City 231405, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.)
| |
Collapse
|
23
|
Combined Inhibition of TGF-β1-Induced EMT and PD-L1 Silencing Re-Sensitizes Hepatocellular Carcinoma to Sorafenib Treatment. J Clin Med 2021; 10:jcm10091889. [PMID: 33925488 PMCID: PMC8123871 DOI: 10.3390/jcm10091889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary hepatic malignancy. HCC is one of the leading causes of cancer deaths worldwide. The oral multi-tyrosine kinase inhibitor Sorafenib is the standard first-line therapy in patients with advanced unresectable HCC. Despite the significant survival benefit in HCC patients post treatment with Sorafenib, many patients had progressive disease as a result of acquiring drug resistance. Circumventing resistance to Sorafenib by exploring and targeting possible molecular mechanisms and pathways is an area of active investigation worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process allowing epithelial cells to assume mesenchymal traits. HCC tumour cells undergo EMT to become immune evasive and develop resistance to Sorafenib treatment. Immune checkpoint molecules control immune escape in many tumours, including HCC. The aim of this study is to investigate whether combined inhibition of EMT and immune checkpoints can re-sensitise HCC to Sorafenib treatment. Post treatment with Sorafenib, HCC cells PLC/PRF/5 and Hep3B were monitored for induction of EMT and immune checkpoint molecules using quantitative reverse transcriptase (qRT)- PCR, western blot, immunofluorescence, and motility assays. The effect of combination treatment with SB431542, a specific inhibitor of the transforming growth factor (TGF)-β receptor kinase, and siRNA mediated knockdown of programmed cell death protein ligand-1 (PD-L1) on Sorafenib resistance was examined using a cell viability assay. We found that three days of Sorafenib treatment activated EMT with overexpression of TGF-β1 in both HCC cell lines. Following Sorafenib exposure, increase in the expression of PD-L1 and other immune checkpoints was observed. SB431542 blocked the TGF-β1-mediated EMT in HCC cells and also repressed PD-L1 expression. Likewise, knockdown of PD-L1 inhibited EMT. Moreover, the sensitivity of HCC cells to Sorafenib was enhanced by combining a blockade of EMT with SB431542 and knockdown of PD-L1 expression. Sorafenib-induced motility was attenuated with the combined treatment of SB431542 and PD-L1 knockdown. Our findings indicate that treatment with Sorafenib induces EMT and expression of immune checkpoint molecules, which contributes to Sorafenib resistance in HCC cells. Thus, the combination treatment strategy of inhibiting EMT and immune checkpoint molecules can re-sensitise HCC cells to Sorafenib.
Collapse
|
24
|
Lnc GNG12-AS1 knockdown suppresses glioma progression through the AKT/GSK-3β/β-catenin pathway. Biosci Rep 2021; 40:225952. [PMID: 32735016 PMCID: PMC7435023 DOI: 10.1042/bsr20201578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are increasingly being regarded as regulators of glioma development. Notably, some studies report that GNG12-AS1 plays important functions and molecular mechanism in breast cancer, but there are no existing studies in glioma. OBJECTIVE To analyze the biological functions and potential mechanisms of GNG12-AS1 in glioma. METHODS We detected the expression of GNG12-AS1 in glioma tissues through analyzing TCGA data as well as our clinical samples. We then evaluated cell proliferation through MTT assay and colony formation and cell migration by transwell assay, wound healing assay and single cell tracking assay. After, we analyzed the effects of the AKT/GSK-3β/β-catenin through Western blotting and utilized the β-catenin agonist SKL2001 for the rescue experiment. RESULTS GNG12-AS1 was highly expressed in glioma tissues. The silence of GNG12-AS1 inhibited the proliferation, migration and epithelial-mesenchymal transition of glioma cells, and reduced the activity of the AKT/GSK-3β/β-catenin pathway. Notably, SKL2001 could reverse cell migration as well as β-catenin expression in glioma cells with lower GNG12-AS1 expression. CONCLUSIONS GNG12-AS1 regulates proliferation and migration of glioma cells through the AKT/GSK-3β/β-catenin signaling and can perhaps be a new target for the treatment of glioma.
Collapse
|
25
|
Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate epithelial mesenchymal transition (EMT) of colon cancer cells. Life Sci 2021; 269:119035. [PMID: 33450254 DOI: 10.1016/j.lfs.2021.119035] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
AIMS EMT is the process by which a polarized epithelial cell undergoes several changes leading to highly invasive and fibroblast-like morphology. It has been described that miR-375 is inversely associated with EMT in cancerous patients and can effectively inhibit invasion and migration of tumor cells. Here, we investigate whether miR-375 mimic delivered by tumor-derived exosomes could reverse EMT process. MAIN METHODS The exosomes were isolated from HT-29 and SW480. Subsequently, exosomes were loaded with miR-375-3p mimic applying modified calcium chloride method. Quantitative real-time PCR was used for evaluation of the loading efficiency of miR-375 mimic in the exosomes. The effects of miR-375 loaded tumor exosomes (TEXomiR) on EMT process investigated using flow cytometry, cell morphology, and invasion and migration assay. KEY FINDINGS The in vitro results showed that the tumor derived exosomes can efficiently deliver miR-375 mimic to reduce the expression of β-catenin, vimentin, ZEB1, and snail. In contrast, TEXomiR significantly increased the expression of E- cadherin in EMT process. Furthermore, the migration and invasion abilities of HT-29 and SW480 cells were inhibited by TEXomiR. The expression of CD44 and CD133 are increased in EMT process. Flow cytometry evaluation demonstrated that treatment with TEXomiR significantly decreased the expression of CD44 and CD133 in SW480 cell line. SIGNIFICANCE Our results imply that colon cancer cells-derived exosomes could be used as an effective nonvehicle to deliver miR-375-3p mimic. Moreover, TEXomiR may be a potent therapeutic agent for the treatment of metastatic colorectal cancer.
Collapse
|
26
|
Qian L, Liu F, Chu Y, Zhai Q, Wei X, Shao J, Li R, Xu Q, Yu L, Liu B, Liu Q. MicroRNA-200c Nanoparticles Sensitized Gastric Cancer Cells to Radiotherapy by Regulating PD-L1 Expression and EMT. Cancer Manag Res 2020; 12:12215-12223. [PMID: 33273858 PMCID: PMC7707438 DOI: 10.2147/cmar.s279978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Immuno-checkpoint inhibitors (ICIs) in advanced gastric cancer either as monotherapy or in combining strategies are rapidly evolving but still in early phase. Various efforts have been made to provide insights into regulating immune checkpoint molecule programmed cell death ligand-1 (PD-L1) expression to improve ICIs efficacy. The aim of this study was to investigate the effect and potential mechanism of miR-200c nanoparticles combined with radiotherapy in gastric cancer cells. Methods We prepared miR-200c-loaded nanoparticles (miR-200c NPs) to achieve targeted delivery of miR-200c to AGS cells. The roles of miR-200c NPs and radiotherapy in regulating the viability of AGS cells were assessed by CCK-8 toxicity test and Annexin V-FITC/PI apoptosis kit. Flow cytometry was used to analyze expression of PD-L1 and CD44 on the surface of AGS cells treated by miR-200c NPs and/or ionizing radiation. Enzyme-linked immunosorbent assay (ELISA) was used to test the level of transforming growth factor-beta 1 (TGF-β1) secreted by AGS cells. The cooperation mechanism between miR-200c NPs and radiotherapy was also explored in vitro. Results Compared with naked miR-200c mimics, miR-200c NPs significantly downregulated PD-L1 expression of gastric cancer cells. The combination of miR-200c NPs and radiotherapy showed significantly synergistic inhibitory effect on gastric cancer cells by inhibiting immune escape mediated by PD-L1, reversing EMT phenotype as well as abrogating cancer stem cells (CSCs)-associated properties of tumor cells. Conclusion MiR-200c NPs sensitized gastric cancer cells to radiotherapy by regulating PD-L1 expression and EMT.
Collapse
Affiliation(s)
- Lingyu Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China.,Department of Oncology, Rudong Peoples' Hospital of Jiangsu Province, Nantong, People's Republic of China
| | - Fangcen Liu
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qingqing Zhai
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Xiao Wei
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qiuping Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
27
|
He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother 2020; 132:110851. [PMID: 33080466 DOI: 10.1016/j.biopha.2020.110851] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway is a highly conserved and tightly controlled molecular mechanism that regulates embryonic development, cellular proliferation and differentiation. Of note, accumulating evidence has shown that the aberrant of WNT/β-catenin signaling promotes the development and/or progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults. There are two different WNT signaling pathways have been identified, which were termed non-canonical and canonical pathways, the latter involving the activation of β-catenin. β-catenin, acting as an intracellular signal transducer in the WNT signaling pathway, is encoded by CTNNB1 and plays a critical role in tumorigenesis. In the past research, most liver tumors have mutations in genes encoding key components of the WNT/β-catenin signaling pathway. In addition, several of other signaling pathways also can crosswalk with β-catenin. In this review, we discuss the most relevant molecular mechanisms of action and regulation of WNT/β-catenin signaling in the development and pathophysiology of liver cancers, as well as in the development of therapeutics.
Collapse
Affiliation(s)
- Shuai He
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China.
| |
Collapse
|
28
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Nonalcoholic fatty liver disease and colorectal cancer: Correlation and missing links. Life Sci 2020; 262:118507. [PMID: 33017572 DOI: 10.1016/j.lfs.2020.118507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major metabolic diseases that occur in almost one in every four global population, while colorectal cancer (CRC) is one of the leading causes of cancer related deaths in the world. Individuals with pre-existing NAFLD show a higher rate of developing CRC and liver metastasis, suggesting a causal relationship. Interestingly, both of these diseases are strongly associated with obesity, which is also a growing global health concern. In this current review, we will explore scientific findings that demonstrate the relationship between NAFLD, CRC and obesity, as well as the underlying mechanisms. We will also indicate the missing links and knowledge gaps that require more in-depth investigation.
Collapse
|
30
|
CD44, IL-33, and ST2 Gene Polymorphisms on Hepatocellular Carcinoma Susceptibility in the Chinese Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2918517. [PMID: 33062675 PMCID: PMC7538256 DOI: 10.1155/2020/2918517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 01/27/2023]
Abstract
The interleukin- (IL-) 33/ST2 axis plays a pivotal role in tumorigenesis through influencing cancer stemness and other mechanisms. CD44 is one of the critical markers of hepatocellular carcinoma (HCC) among the cancer stem cells (CSCs). There is still a lack of CD44 gene single-nucleotide polymorphisms (SNPs) combined with IL-33/ST2 pathway single-nucleotide polymorphisms in HCC susceptibility analysis literature, although CD44 and IL-33/ST2 have been reported separately in human cancers. This study is aimed at investigating the relationship between CD44, IL-33, and ST2 SNPs and HCC susceptibility and clinicopathological features. We analyzed 565 HCC patients and 561 healthy controls in the Chinese population. The genes for CD44rs187115A>G, IL-33 rs1929992A>G, and ST2 rs3821204G>C were typed using the SNaPshot method. We found that the distribution frequencies of CD44 and ST2 alleles and genotypes in both the HCC case group and the control group were statistically significant (p < 0.05). The results showed that individuals carrying at least one G allele of the CD44 rs187115 gene were at a higher risk than the AA genotype carriers (p = 0.007, odds ratio (OR) = 1.429, 95% confidence interval (CI): 1.102-1.854). Similarly, individuals with at least one C allele of ST2 rs3821204 had a higher risk of HCC than those with GG genes (p ≤ 0.001, OR = 1.647, 95% CI: 1.296-2.093). Combining the haplotype analysis of the 3 loci suggested that CD44 rs187115, IL-33 rs1929992, and ST2 rs3821204 are associated with the risk of HCC and could potentially serve as useful genetic markers for HCC in some populations of China.
Collapse
|
31
|
Ismail M, Mohamady S, Samir N, Abouzid KAM. Design, Synthesis, and Biological Evaluation of Novel 7 H-[1,2,4]Triazolo[3,4- b][1,3,4]thiadiazine Inhibitors as Antitumor Agents. ACS OMEGA 2020; 5:20170-20186. [PMID: 32832771 PMCID: PMC7439371 DOI: 10.1021/acsomega.0c01829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
A series of novel anticancer hydrazinotriazolothiadiazine-based derivatives were designed based on the structure-activity relationship of the previously reported anticancer triazolothiadiazines. These derivatives were synthesized and biologically screened against full NCI-60 cancer cell lines revealing compound 5l with a potential antiproliferative effect. 5l was screened over 16 kinases to study its cytotoxic mechanism which showed to inhibit glycogen synthase kinase-3 β (GSK-3β) with IC50 equal to 0.883 μM and 14-fold selectivity over CDK2. Also, 5l increased active caspase-3 levels, induced cell cycle arrest at the G2-M phase, and increased the percentage of Annexin V-fluorescein isothiocyanate-positive apoptotic cells in PC-3 prostate cancer-treated cells. Molecular docking and dynamics were performed to predict the binding mode of 5l in the GSK-3β ATP binding site. 5l can be utilized as a starting scaffold for developing potential GSK-3β inhibitors.
Collapse
Affiliation(s)
- Muhammad
I. Ismail
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837 Cairo, Egypt
| | - Samy Mohamady
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837 Cairo, Egypt
| | - Nermin Samir
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Khaled A. M. Abouzid
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department
of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia 32897, Egypt
| |
Collapse
|
32
|
Liu YC, Yeh CT, Lin KH. Cancer Stem Cell Functions in Hepatocellular Carcinoma and Comprehensive Therapeutic Strategies. Cells 2020; 9:cells9061331. [PMID: 32466488 PMCID: PMC7349579 DOI: 10.3390/cells9061331] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of cancer-related mortality owing to resistance to traditional treatments and tumor recurrence after therapy, which leads to poor therapeutic outcomes. Cancer stem cells (CSC) are a small subset of tumor cells with the capability to influence self-renewal, differentiation, and tumorigenesis. A number of surface markers for liver cancer stem cell (LCSC) subpopulations (EpCAM, CD133, CD44, CD13, CD90, OV-6, CD47, and side populations) in HCC have been identified. LCSCs play critical roles in regulating HCC stemness, self-renewal, tumorigenicity, metastasis, recurrence, and therapeutic resistance via genetic mutations, epigenetic disruption, signaling pathway dysregulation, or alterations microenvironment. Accumulating studies have shown that biomarkers for LCSCs contribute to diagnosis and prognosis prediction of HCC, supporting their utility in clinical management and development of therapeutic strategies. Preclinical and clinical analyses of therapeutic approaches for HCC using small molecule inhibitors, oncolytic measles viruses, and anti-surface marker antibodies have demonstrated selective, efficient, and safe targeting of LCSC populations. The current review focuses on recent reports on the influence of LCSCs on HCC stemness, tumorigenesis, and multiple drug resistance (MDR), along with LCSC-targeted therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan;
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan;
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-211-8263
| |
Collapse
|
33
|
Cao Y, Lv W, Ding W, Li J. Sevoflurane inhibits the proliferation and invasion of hepatocellular carcinoma cells through regulating the PTEN/Akt/GSK‑3β/β‑catenin signaling pathway by downregulating miR‑25‑3p. Int J Mol Med 2020; 46:97-106. [PMID: 32319540 PMCID: PMC7255470 DOI: 10.3892/ijmm.2020.4577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022] Open
Abstract
Sevoflurane (Sevo) is one of the most frequently used volatile anesthetic agents in surgical oncology and has various effects on tumors, including inhibiting tumor growth, recurrence, and metastases; however, the molecular mechanisms are unknown. This study tried to investigate the influence of Sevo on hepatocellular carcinoma (HCC) cells and its possible mechanisms of action. The present study found that Sevo suppressed both the proliferative and invasive capabilities of both HCCLM3 and Huh7 cells in a dose-dependent manner. Moreover, 53 differentially expressed microRNAs (miRNAs/miRs) in HCC cells that resulted from Sevo were screened out using miRNA microarray assay. In particular, miR-25-3p displayed a significant decrease in response to Sevo treatment. Further studies showed that Sevo's inhibitory actions on HCC cells were attenuated by overexpression of miR-25-3p but enhanced by its inhibitor. Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN), a tumor suppressor gene, was directly targeted by miR-25-3p and its expression was upregulated by Sevo. In addition, Sevo suppressed the expression of phosphorylated-protein kinase B (p-Akt) (S473), glycogen synthase kinase (GSK) 3β (p-GSK3β) (S9), β-catenin, c-Myc and matrix metalloproteinase 9; whereas these inhibitory effects were reversed by miR-25-3p overexpression. More importantly, Sevo's tumor-suppressive effects were enhanced by LY294002 (a PI3-kinase inhibitor) but weakened by insulin growth factor-1 (an agonist of the Akt signaling pathway). These data suggest that Sevo's antitumor effects on HCC could be explained, in part, by Sevo inhibiting the miR-25-3p/PTEN/Akt/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wenfei Lv
- Department of Anesthesiology, Beijing Youan Hospital, Capital Medical University, Beijing 100048, P.R. China
| | - Wan Ding
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| | - Jun Li
- Department of Anesthesiology, No. 6 Medical Center, General Hospital of PLA, Beijing 100048, P.R. China
| |
Collapse
|
34
|
Yin J, Zhang H, Wu X, Zhang Y, Li J, Shen J, Zhao Y, Xiao Z, Lu L, Huang C, Zhang Z, Du F, Wu Y, Kaboli PJ, Cho CH, Yuan D, Li M. CD44 inhibition attenuates EGFR signaling and enhances cisplatin sensitivity in human EGFR wild‑type non‑small‑cell lung cancer cells. Int J Mol Med 2020; 45:1783-1792. [PMID: 32236608 PMCID: PMC7169661 DOI: 10.3892/ijmm.2020.4562] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Cluster of differentiation 44 (CD44) as a transmembrane glycoprotein is found to be expressed in non-small cell lung cancer (NSCLC), is significantly associated with NSLC progression, metastasis and drug resistance. This study aimed to explore whether CD44 inhibition improves the sensitivity of epidermal growth factor receptor (EGFR) wild-type NSCLC cells to cisplatin and how it affects wild-type EGFR in NSCLC cells. Small interfering RNA was used to knockdown CD44 expression in EGFR wild-type NSCLC cell line H460. Results suggested that CD44 downregulation reduced cell growth, promoted G0/G1 cell cycle arrest and induced cell apoptosis in H460 cells and these effects were evidently enhanced when in combination with cisplatin. Deactivation of EGFR signaling pathway including EGFR phosphorylation and its downstream molecules, targets ERK, AKT1 and SRC which were also observed in CD44-silenced H460 cells with or without EGF stimulation. Furthermore, the CD44 expression level was positively correlated with wild-type EGFR level in human lung adenocarcinoma tissues and CD44 inhibition significantly accelerated the degradation of EGFR, indicating that enhanced sensitivity of H460 cells to cisplatin by downregulation of CD44 might be due to EGFR degradation. This study demonstrated that suppression of CD44 deactivated EGFR signals in NSCLC cells with wild-type EGFR, thereby contributing to the inhibition of cell proliferation and the reinforcement of cisplatin sensitivity. It is suggested that downregulation of CD44 could be a novel potential therapeutic strategy for the treatment of EGFR wild-type NSCLC.
Collapse
Affiliation(s)
- Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuchen Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan 610000, P.R. China
| | - Chengliang Huang
- Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dandan Yuan
- Department of Internal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
35
|
Wu Y, Zhang J, Zhang X, Zhou H, Liu G, Li Q. Cancer Stem Cells: A Potential Breakthrough in HCC-Targeted Therapy. Front Pharmacol 2020; 11:198. [PMID: 32210805 PMCID: PMC7068598 DOI: 10.3389/fphar.2020.00198] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulations of cells with stem cell characteristics that produce both cancerous and non-tumorigenic cells in tumor tissues. The literature reports that CSCs are closely related to the development of hepatocellular carcinoma (HCC) and promote the malignant features of HCC such as high invasion, drug resistance, easy recurrence, easy metastasis, and poor prognosis. This review discusses the origin, molecular, and biological features, functions, and applications of CSCs in HCC in recent years; the goal is to clarify the importance of CSCs in treatment and explore their potential value in HCC-targeted therapy.
Collapse
|
36
|
Fang M, Yao M, Yang J, Zheng WJ, Wang L, Yao DF. Abnormal CD44 activation of hepatocytes with nonalcoholic fatty accumulation in rat hepatocarcinogenesis. World J Gastrointest Oncol 2020; 12:66-76. [PMID: 31966914 PMCID: PMC6960074 DOI: 10.4251/wjgo.v12.i1.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/26/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prevalence of nonalcoholic fatty liver disease (NAFLD) is rapidly increasing, and NAFLD has become one of the most common chronic liver diseases worldwide. With abnormal CD44 activation, the severe form of NAFLD can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Thus, the molecular mechanism of CD44 in NAFLD needs to be identified. AIM To investigate the relationship between CD44 activation and malignant transformation of rat hepatocytes under nonalcoholic lipid accumulation. METHODS Sprague-Dawley rats were fed a high-fat (HF) for 12 wk to entice NAFLD and then with HF plus 2-fluorenylacetamide (0.05%) to induce HCC. Rats were sacrificed every 2 wk, and subsequently divided into the groups based on liver pathological examination (hematoxylin and eosin staining): NAFLD, denaturation, precancerosis, HCC, and control. Liver CD44 mRNA was detected by OneArray. Liver fat as assessed by Oil red O staining or CD44 by immunohistochemical assay was compared with their integral optic density. Serum CD44, alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, and AFP levels were quantitatively tested. RESULTS Elevated CD44 was first reported in hepatocarcinogenesis, with increasing expression from NAFLD to HCC at the protein or mRNA level. The CD44 integral optic density values were significantly different between the control group and the NAFLD (t = 25.433, P < 0.001), denaturation (t = 48.822, P < 0.001), precancerosis (t = 27.751, P < 0.001), and HCC (t = 16.239, P < 0.001) groups, respectively. Hepatic CD44 can be secreted into the blood, and serum CD44 levels in HCC or precancerous rats were significantly higher (P < 0.001) than those in any of the other rats. Positive correlations were found between liver CD44 and CD44 mRNA (rs = 0.373, P = 0.043) and serum CD44 (rs = 0.541, P = 0.002) and between liver CD44 mRNA and serum CD44 (rs = 0.507, P = 0.004). Moreover, significant correlations were found between liver CD44 and liver AFP (rs = 0.572, P = 0.001), between serum CD44 and serum AFP (rs = 0.608, P < 0.001), and between CD44 mRNA and AFP mRNA (rs = 0.370, P = 0.044). CONCLUSION The data suggested that increasing CD44 expression is associated with the malignant transformation of hepatocytes in NAFLD.
Collapse
Affiliation(s)
- Miao Fang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jie Yang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
37
|
Amantini C, Morelli MB, Nabissi M, Piva F, Marinelli O, Maggi F, Bianchi F, Bittoni A, Berardi R, Giampieri R, Santoni G. Expression Profiling of Circulating Tumor Cells in Pancreatic Ductal Adenocarcinoma Patients: Biomarkers Predicting Overall Survival. Front Oncol 2019; 9:874. [PMID: 31552188 PMCID: PMC6746928 DOI: 10.3389/fonc.2019.00874] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
The interest in liquid biopsy is growing because it could represent a non-invasive prognostic or predictive tool for clinical outcome in patients with pancreatic ductal adenocarcinoma (PDAC), an aggressive and lethal disease. In this pilot study, circulating tumor cells (CTCs), CD16 positive atypical CTCs, and CTC clusters were captured and characterized in the blood of patients with PDAC before and after palliative first line chemotherapy by ScreenCell device, immunohistochemistry, and confocal microscopy analysis. Gene profiles were performed by digital droplet PCR in isolated CTCs, five primary PDAC tissues, and three different batches of RNA from normal human pancreatic tissue. Welsh's t-test, Kaplan-Meier survival, and Univariate Cox regression analyses have been performed. Statistical analysis revealed that the presence of high CTC number in blood is a prognostic factor for poor overall survival and progression free survival in advanced PDAC patients, before and after first line chemotherapy. Furthermore, untreated PDAC patients with CTCs, characterized by high ALCAM, POU5F1B, and SMO mRNAs expression, have shorter progression free survival and overall survival compared with patients expressing the same biomarkers at low levels. Finally, high SHH mRNA levels are negatively associated to progression free survival, whereas high vimentin mRNA levels are correlated with the most favorable prognosis. By hierarchical clustering and correlation index analysis, two cluster gene signatures were identified in CTCs: the first, with high expression of VEGFA, NOTCH1, EPCAM, IHH, is the signature of PDAC patients before chemotherapy, whereas the second, with an enrichment in the expression of CD44, ALCAM, and POU5F1B stemness and pluripotency genes, is reported after palliative chemotherapy. Overall our data support the clinic value of the identification of CTC's specific biomarkers to improve the prognosis and the therapy in advanced PDAC patients.
Collapse
Affiliation(s)
- Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Maria Beatrice Morelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oliviero Marinelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Bianchi
- Oncology Clinic, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Bittoni
- Oncology Clinic, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, Italy
| | - Rossana Berardi
- Oncology Clinic, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, Italy
| | - Riccardo Giampieri
- Oncology Clinic, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, Italy
| | - Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| |
Collapse
|
38
|
Sahin I, Eturi A, De Souza A, Pamarthy S, Tavora F, Giles FJ, Carneiro BA. Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses. Cancer Biol Ther 2019; 20:1047-1056. [PMID: 30975030 DOI: 10.1080/15384047.2019.1595283] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As a kinase at the crossroads of numerous metabolic and cell growth signaling pathways, glycogen synthase kinase-3 beta (GSK-3β) is a highly desirable therapeutic target in cancer. Despite its involvement in pathways associated with the pathogenesis of several malignancies, no selective GSK-3β inhibitor has been approved for the treatment of cancer. The regulatory role of GSK-3β in apoptosis, cell cycle, DNA repair, tumor growth, invasion, and metastasis reflects the therapeutic relevance of this target and provides the rationale for drug combinations. Emerging data on GSK-3β as a mediator of anticancer immune response also highlight the potential clinical applications of novel selective GSK-3β inhibitors that are entering clinical studies. This manuscript reviews the preclinical and early clinical results with GSK-3β inhibitors and delineates the developmental therapeutics landscape for this potentially important target in cancer therapy.
Collapse
Affiliation(s)
- Ilyas Sahin
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Aditya Eturi
- b Department of Medicine , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Andre De Souza
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Sahithi Pamarthy
- c Atrin Pharmaceuticals , Pennsylvania Biotechnology Center , Doylestown , PA , USA
| | - Fabio Tavora
- d Argos Laboratory/Messejana Heart and Lung Hospital , Fortaleza , Brazil
| | - Francis J Giles
- e Developmental Therapeutics Consortium , Chicago , IL , USA
| | - Benedito A Carneiro
- a Lifespan Cancer Institute, Division of Hematology/Oncology , The Warren Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
39
|
Sun Y, Zhou QM, Lu YY, Zhang H, Chen QL, Zhao M, Su SB. Resveratrol Inhibits the Migration and Metastasis of MDA-MB-231 Human Breast Cancer by Reversing TGF-β1-Induced Epithelial-Mesenchymal Transition. Molecules 2019; 24:molecules24061131. [PMID: 30901941 PMCID: PMC6471699 DOI: 10.3390/molecules24061131] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 01/20/2023] Open
Abstract
Metastasis is a major cause of death in patients with breast cancer. In the process of cancer development, epithelial-mesenchymal transition (EMT) is crucial to promoting the invasion and migration of tumor cells. In a previous study, the role of resveratrol in migration and metastasis was investigated in MDA-MB-231 (MDA231) human breast cancer cells and a xenograft-bearing mouse model. Additionally, the related mechanism was explored. In the present study, in vitro Transwell assays showed that resveratrol can inhibit the migration of transforming growth factor (TGF)-β1-induced MDA231 cells in a concentration-dependent manner. An enzyme-linked immunosorbent assay (ELISA) showed that resveratrol can reduce the secretion of matrix metalloproteinase (MMP)-2 and MMP-9. Immunofluorescence was performed to confirm the expression of EMT-related markers. Immunofluorescence assays confirmed that resveratrol changed the expression of the EMT-related markers E-cadherin and vimentin. Western blot analysis demonstrated that resveratrol decreased the expression levels of MMP-2, MMP-9, Fibronectin, α-SMA, P-PI3K, P-AKT, Smad2, Smad3, P-Smad2, P-Smad3, vimentin, Snail1, and Slug, as well as increased the expression levels of E-cadherin in MDA231 cells. In vivo, resveratrol inhibited lung metastasis in a mouse model bearing MDA231 human breast cancer xenografts without marked changes in body weight or liver and kidney function. These results indicate that resveratrol inhibits the migration of MDA231 cells by reversing TGF-β1-induced EMT and inhibits the lung metastasis of MDA231 human breast cancer in a xenograft-bearing mouse model.
Collapse
Affiliation(s)
- Yang Sun
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qian-Mei Zhou
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yi-Yu Lu
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hui Zhang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qi-Long Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ming Zhao
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- AntiCancer Inc., San Diego, CA 92100, USA.
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
40
|
Chen K, Lai K, Zhang X, Qin Z, Fu Q, Luo C, Jin X, Hu J, Liu S, Yao K. Bromfenac Inhibits TGF-β1-Induced Fibrotic Effects in Human Pterygium and Conjunctival Fibroblasts. Invest Ophthalmol Vis Sci 2019; 60:1156-1164. [PMID: 30908581 DOI: 10.1167/iovs.18-24743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown antifibrotic effects on several diseases. The aims of the present in vitro study were to investigate the antifibrotic effects of bromfenac (a kind of NSAID) on primary human pterygium fibroblasts (HPFs) and primary human conjunctival fibroblasts (HConFs), as well as to explore the possible mechanisms of these effects. Methods The cells used in this study were primary HPFs and HConFs, and profibrotic activation was induced by transforming growth factor-beta1 (TGF-β1). Western blot, quantitative real-time PCR, and immunofluorescence (IF) assays were used to detect the effects of TGF-β1 and bromfenac on the synthesis of fibronectin (FN), type III collagen (COL3), and alpha-smooth muscle actin (α-SMA) in HPFs and HConFs; the changes of signaling pathways were detected by Western blot; cell migration ability was detected by wound healing assay; cell proliferation ability was detected by CCK-8 assay; and pharmaceutical inhibitions of the downstream signaling pathways of TGF-β1 were used to assess their possible associations with the effects of bromfenac. Results Bromfenac suppressed the TGF-β1-induced protein expression of FN (0.59 ± 0.07 folds, P = 0.008), COL3 (0.48 ± 0.08 folds, P = 0.001), and α-SMA (0.61 ± 0.03 folds, P = 0.008) in HPFs. Bromfenac also attenuated TGF-β1-induced cell migration (0.30 ± 0.07 folds, P < 0.001), cell proliferation (0.64 ± 0.03 folds, P = 0.002) and the expression levels of p-AKT (0.66 ± 0.08 folds, P = 0.032), p-ERK1/2 (0.69 ± 0.11 folds, P = 0.003), and p-GSK-3β-S9 (0.65 ± 0.10 folds, P = 0.002) in HPFs. PI3K/AKT inhibitor (wortmannin) and MEK/ERK inhibitor (U0126) reduced the TGF-β1-induced synthesis of FN, COL3, and α-SMA in HPFs. All the results were similar in HConFs. Conclusions Bromfenac protects against TGF-β1-induced synthesis of FN, α-SMA, and COL3 in HPFs and HConFs at least in part by inactivating the AKT and ERK pathways.
Collapse
Affiliation(s)
- Kailin Chen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Kairan Lai
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xiaobo Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Zhenwei Qin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Qiuli Fu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Chenqi Luo
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xiuming Jin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Jianghua Hu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Siyu Liu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
41
|
Niu J, Wang Y, Liu B, Yao Y. Mesenchymal stem cells prolong the survival of orthotopic liver transplants by regulating the expression of TGF-β1. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 29:601-609. [PMID: 30260784 DOI: 10.5152/tjg.2018.17395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Recent studies have shown that transforming growth factor-β1 (TGF-β1) is prominently associated with acute rejection. This study aimed to explore the role of mesenchymal stem cells (MSCs) in the maintenance of the long-term survival of orthotopic liver transplants (OLTs) via the regulation of TGF-β1 in an experimental rat model. MATERIALS AND METHODS We used Lewis rats as donors and ACI rats as recipients. Hematoxylin and eosin staining was performed to evaluate histomorphological changes, and Western blot was performed to measure protein expression. RESULTS The expression of TGF-β1 in the liver allografts and spleen and protein levels of forkhead box P3 (FoxP3), interleukin-10 (IL-10), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) were measured using Western blot. The suppressive capacity of CD4+CD25+ regulatory T cells was evaluated using the MTT assay. Cell-mediated immunotoxicity was evaluated using the mixed lymphocyte reaction of CD4+ T cells and cytotoxic T lymphocyte (CTL) assay of CD8+ T cells. The results showed that MSCs prolonged the survival of the OLT mice by regulating the expression of TGF-β1 at different time points. The administration of MSCs promoted a prolonged survival in the ACI recipients (105±6.6 d) compared with the MSC-untreated recipients (16.2±4.0 d). On the postoperative day (POD) 7, the MSC-treated recipients showed a significantly higher expression of TGF-β1, FoxP3, IL-10, and CTLA-4 than the MSC-untreated recipients. However, on POD 100, the MSC-treated recipients showed a lower expression of TGF-β1 and FOxP3 than that on POD 7. Moreover, on POD 7, CD4+CD25+ regulatory T cells extracted from the MSC-treated recipients showed a higher expression of FoxP3, IL-10, CTLA-4, and suppressive capacity. On POD 7, CD4+ T cells from the MSC-treated recipients showed more significantly diminished proliferative functions than the MSC-untreated recipients; further, a reduced allospecific CTL activity of CD8+ T cells was observed in the MSC-treated recipients. CONCLUSION MSCs may represent a promising cell therapeutic approach for inducing immunosuppression or transplant tolerance.
Collapse
Affiliation(s)
- Jian Niu
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Yue Wang
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Bin Liu
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| | - Yuanhu Yao
- Department of General Surgery, Xuzhou Medical College Hospital, Jiangsu, China
| |
Collapse
|
42
|
Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS, Chen GG. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol 2018; 10:1758835918816287. [PMID: 30622654 PMCID: PMC6304707 DOI: 10.1177/1758835918816287] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
The poor clinical outcome of hepatocellular carcinoma (HCC) patients is ascribed to the resistance of HCC cells to traditional treatments and tumor recurrence after curative therapies. Cancer stem cells (CSCs) have been identified as a small subset of cancer cells which have high capacity for self-renewal, differentiation and tumorigenesis. Recent advances in the field of liver CSCs (LCSCs) have enabled the identification of CSC surface markers and the isolation of CSC subpopulations from HCC cells. Given their central role in cancer initiation, metastasis, recurrence and therapeutic resistance, LCSCs constitute a therapeutic opportunity to achieve cure and prevent relapse of HCC. Thus, it is necessary to develop therapeutic strategies to selectively and efficiently target LCSCs. Small molecular inhibitors targeting the core stemness signaling pathways have been actively pursued and evaluated in preclinical and clinical studies. Other alternative therapeutic strategies include targeting LCSC surface markers, interrupting the CSC microenvironment, and altering the epigenetic state. In this review, we summarize the properties of CSCs in HCC and discuss novel therapeutic strategies that can be used to target LCSCs.
Collapse
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck
Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of
Wales Hospital, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, Faculty of Medicine, The
Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,
China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao-guang Hu
- Department of Gastrointestinal Surgery, The
Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong,
China
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas
Surgery, The Second Clinical Medical College of Jinan University (Shenzhen
People’s Hospital), Shenzhen, Guangdong Province, China
| | - Sheng-li Yang
- Cancer Center, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan
District People’s Hospital of Shenzhen, Shenzhen, Guangdong Province,
China
| | - Zhongqin Gong
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Paul B. S. Lai
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
| | - George G. Chen
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
43
|
Knockdown of TGF-β1 expression in human umbilical cord mesenchymal stem cells reverts their exosome-mediated EMT promoting effect on lung cancer cells. Cancer Lett 2018; 428:34-44. [DOI: 10.1016/j.canlet.2018.04.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023]
|
44
|
Wang C, Ruan P, Zhao Y, Li X, Wang J, Wu X, Liu T, Wang S, Hou J, Li W, Li Q, Li J, Dai F, Fang D, Wang C, Xie S. Spermidine/spermine N1-acetyltransferase regulates cell growth and metastasis via AKT/β-catenin signaling pathways in hepatocellular and colorectal carcinoma cells. Oncotarget 2018; 8:1092-1109. [PMID: 27901475 PMCID: PMC5352037 DOI: 10.18632/oncotarget.13582] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/12/2016] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are among the most common cancers across the world. Therefore, identifying the potential molecular mechanisms that promote HCC and CRC progression and metastasis are urgently needed. Spermidine/spermine N1-acetyltransferase (SSAT) is a catabolic enzyme that acetylates the high-order polyamines spermine and spermidine, thus decreasing the cellular content of polyamines. Several publications have suggested that depletion of intracellular polyamines inhibited tumor progression and metastasis in various cancer cells. However, whether and how SSAT regulates cell growth, migration and invasion in hepatocellular and colorectal carcinoma cells remains unclear. In this study, depletion of polyamines mediated by SSAT not only attenuated the tumor cell proliferation but also dramatically inhibited cell migration and invasion in hepatocellular and colorectal carcinoma cells. Subsequent investigations revealed introduction of SSAT into HepG2, SMMC7721 hepatocellular carcinoma cells and HCT116 colorectal carcinoma cells significantly suppressed p-AKT, p-GSK3β expression as well as β-catenin nuclear translocation, while inhibition of GSK3β activity or exogenous polyamines could restore SSAT-induced decreases in the protein expression of p-AKT, p-GSK3β and β-catenin. Conversely, knockdown of SSAT in Bel7402 hepatocellular carcinoma cells and HT-29 colorectal carcinoma cells which expressed high levels of SSAT endogenously significantly promoted the expression of p-AKT, p-GSK3β as well as β-catenin nuclear translocation. Taken together, our results indicated depletion of polyamines by SSAT significantly inhibited cell proliferation, migration and invasion through AKT/GSK3β/β-catenin signaling pathway in hepatocellular carcinoma and colorectal cancer cells.
Collapse
Affiliation(s)
- Cong Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ping Ruan
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaomin Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jun Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaoxiao Wu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Tong Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shasha Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jiuzhou Hou
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Wei Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Qian Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Jinghua Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Fujun Dai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Dong Fang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Songqiang Xie
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| |
Collapse
|
45
|
Xu J, Yang Y, Xie R, Liu J, Nie X, An J, Wen G, Liu X, Jin H, Tuo B. The NCX1/TRPC6 Complex Mediates TGFβ-Driven Migration and Invasion of Human Hepatocellular Carcinoma Cells. Cancer Res 2018; 78:2564-2576. [PMID: 29500176 DOI: 10.1158/0008-5472.can-17-2061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/19/2017] [Accepted: 02/27/2018] [Indexed: 01/11/2023]
Abstract
TGFβ plays an important role in the progression and metastasis of hepatocellular carcinoma (HCC), yet the cellular and molecular mechanisms underlying this role are not completely understood. In this study, we investigated the roles of Na+/Ca2+ exchanger 1 (NCX1) and canonical transient receptor potential channel 6 (TRPC6) in regulating TGFβ in human HCC. In HepG2 and Huh7 cells, TGFβ-stimulated intracellular Ca2+ increases through NCX1 and TRPC6 and induced the formation of a TRPC6/NCX1 molecular complex. This complex-mediated Ca2+ signaling regulated the effect of TGFβ on the migration, invasion, and intrahepatic metastasis of human HCC cells in nude mice. TGFβ upregulated TRPC6 and NCX1 expression, and there was a positive feedback between TRPC6/NCX1 signaling and Smad signaling. Expression of both TRPC6 and NCX1 were markedly increased in native human HCC tissues, and their expression levels positively correlated with advancement of HCC in patients. These data reveal the role of the TRPC6/NCX1 molecular complex in HCC and in regulating TGFβ signaling, and they implicate TRPC6 and NCX1 as potential targets for therapy in HCC.Significance: TGFβ induces the formation and activation of a TRPC6/NCX1 molecular complex, which mediates the effects of TGFβ on the migration, invasion, and intrahepatic metastasis of HCC. Cancer Res; 78(10); 2564-76. ©2018 AACR.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Yuan Yang
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Jilong Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Xubiao Nie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi, China. .,Digestive Disease Institute of Guizhou Province, Zunyi, China.,Clinical Medical Research Center of Digestive Diseases of Guizhou Province, Zunyi, China
| |
Collapse
|
46
|
Obeid JM, Kunk PR, Zaydfudim VM, Bullock TN, Slingluff CL, Rahma OE. Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time? Cancer Immunol Immunother 2018; 67:161-174. [PMID: 29052780 PMCID: PMC11028155 DOI: 10.1007/s00262-017-2082-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the second most common cause of cancer death worldwide. Current treatment options for patients with intermediate and advanced HCC are limited, and there is an unmet need for novel therapeutic approaches. HCC is an attractive target for immunomodulation therapy, since it arises in an inflammatory milieu due to hepatitis B and C infections and cirrhosis. However, a major barrier to the development and success of immunotherapy in patients with HCC is the liver's inherent immunosuppressive function. Recent advances in the field of cancer immunology allowed further characterization of immune cell subsets and function, and created new opportunities for therapeutic modulation of the immune system. In this review, we present the different immune cell subsets involved in potential immune modulation of HCC, discuss their function and clinical relevance, review the variety of immune therapeutic agents currently under investigation in clinical trials, and outline future research directions.
Collapse
Affiliation(s)
- Joseph M Obeid
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Paul R Kunk
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Timothy N Bullock
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Osama E Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, 450 Brookline Avenue, M1B13, Boston, MA, 02215, USA.
| |
Collapse
|
47
|
Ye Z, Chen X, Chen X. ARK5 promotes invasion and migration in hepatocellular carcinoma cells by regulating epithelial-mesenchymal transition. Oncol Lett 2017; 15:1511-1516. [PMID: 29434843 PMCID: PMC5774381 DOI: 10.3892/ol.2017.7453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated mortality worldwide. The highly invasive nature of HCC leads to poor prognosis in patients with malignant HCC. AMPK-related protein kinase 5 (ARK5) is a key mediator of migratory activity in human cancer cells. However, the role of ARK5 in invasion and metastasis of HCC cells remains unclear. The present study attempted to determine whether ARK5 is involved in invasion and migration via regulation of epithelial-mesenchymal transition (EMT). Wound healing and Transwell Matrigel invasion assays were utilized to detect the ability of the epithelial Huh7 and mesenchymal SNU387 HCC cells to migrate and invade. Next, the expression of ARK5 and EMT markers, E-cadherin and vimentin, were examined by western blot analysis. Inhibition of ARK5 was able to significantly reduce the ability HCC cells to invade and metastasize. Furthermore, the knockdown of ARK5 was able to reverse the process of EMT in HCC cells. These data suggested that ARK5 may serve an important role in regulating EMT in HCC cells. Taken together, these findings indicate that ARK5 is a potential molecular target for the development of novel HCC therapeutics, which focus on cell invasion and EMT regulation.
Collapse
Affiliation(s)
- Zhiyu Ye
- Department of Hernia and Hepatobiliary Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xudong Chen
- Department of Hernia and Hepatobiliary Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xiaogang Chen
- Department of Hernia and Hepatobiliary Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
48
|
Flores-Téllez TNJ, Villa-Treviño S, Piña-Vázquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol 2017; 23:6750-6776. [PMID: 29085221 PMCID: PMC5645611 DOI: 10.3748/wjg.v23.i37.6750] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic process has been proposed to relay on the capacity to induce local tissue damage and proliferative repair. Liver has a great regeneration capacity and currently, most studies point towards the dominant role of hepatocytes in regeneration at all levels of liver damage. The most frequent liver cancer is hepatocellular carcinoma (HCC). Historical findings originally led to the idea that the cell of origin of HCC might be a progenitor cell. However, current linage tracing studies put the progenitor hypothesis of HCC origin into question. In agreement with their dominant role in liver regeneration, mature hepatocytes are emerging as the cell of origin of HCC, although, the specific hepatocyte subpopulation of origin is yet to be determined. The relationship between the cancer cell of origin (CCO) and cancer-propagating cells, known as hepatic cancer stem cell (HCSC) is unknown. It has been challenging to identify the definitive phenotypic marker of HCSC, probably due to the existence of different cancer stem cells (CSC) subpopulations with different functions within HCC. There is a dynamic interconversion among different CSCs, and between CSC and non-CSCs. Because of that, CSC-state is currently defined as a description of a highly adaptable and dynamic intrinsic property of tumor cells, instead of a static subpopulation of a tumor. Altered conditions could trigger the gain of stemness, some of them include: EMT-MET, epigenetics, microenvironment and selective stimulus such as chemotherapy. This CSC heterogeneity and dynamism makes them out reach from therapeutic protocols directed to a single target. A further avenue of research in this line will be to uncover mechanisms that trigger this interconversion of cell populations within tumors and target it.
Collapse
Affiliation(s)
- Teresita NJ Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| |
Collapse
|
49
|
Choi SI, Kim SY, Lee JH, Kim JY, Cho EW, Kim IG. Osteopontin production by TM4SF4 signaling drives a positive feedback autocrine loop with the STAT3 pathway to maintain cancer stem cell-like properties in lung cancer cells. Oncotarget 2017; 8:101284-101297. [PMID: 29254164 PMCID: PMC5731874 DOI: 10.18632/oncotarget.21021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/26/2017] [Indexed: 01/16/2023] Open
Abstract
Transmembrane 4 L6 family proteins have been known to promote cancer. In this study, we demonstrated that transmembrane 4 L6 family member 4 (TM4SF4), which is induced by γ-radiation in non-small cell lung cancer (NSCLC) cells, is involved in epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) properties of NSCLC through the regulation of osteopontin (OPN). Forced TM4SF4 overexpression in A549 cells increased the secretion of OPN, which activates CD44 or integrin signaling and thus maintains EMT-associated CSC-like properties. OPN, known as a downstream target of β-catenin/T-cell factor 4 (TCF-4), was induced by up-regulated β-catenin via TM4SF4-driven phosphorylation of glycogen synthase kinase 3b (GSK3β). TCF4 complexed to promoter regions of OPN in TM4SF4-overexpressing A549 cells was also confirmed by chromatin immunoprecipitation. Knockout of either β-catenin or TCF4-suppressed OPN expression, demonstrating that both factors are essential for OPN expression in NSCLC cells. OPN secreted by TM4SF4/GSK3β/β-catenin signaling activated the JAK2/STAT3 or FAK/STAT3 pathway, which also up-regulates OPN expression in an autocrine manner and consequently maintains the self-renewal and metastatic capacity of cancer cells. Neutralizing antibody to OPN blocked the autocrine activation of OPN expression, consequently weakened the metastatic and self-renewal capacity of cancer cells. Collectively, our findings indicate that TM4SF4-triggered OPN expression is involved in the persistent reinforcement of EMT or cancer stemness by creating a positive feedback autocrine loop with JAK2/STAT3 or FAK/STAT3 pathways.
Collapse
Affiliation(s)
- Soo Im Choi
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea
| | - Seo Yoen Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea
| | - Jei Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| | - Jung Yul Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| | - Eun Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-Gu, Daejeon 34141, Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 34057, Korea.,Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), Yuseong-Gu, Daejeon 34057, Korea
| |
Collapse
|
50
|
Ping H, Guo L, Xi J, Wang D. Angiotensin II type 2 receptor-interacting protein 3a inhibits ovarian carcinoma metastasis via the extracellular HMGA2-mediated ERK/EMT pathway. Tumour Biol 2017. [PMID: 28651497 DOI: 10.1177/1010428317713389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Local migration and long-distance metastasis is the main reason for higher mortality of ovarian cancer. Microtubule-associated tumor suppressor 1/angiotensin II type 2 receptor-interacting protein is associated with tumor initiation and progression and exerts anti-tumor effects. High mobility group AT-hook 2 is overexpressed in majority of metastatic carcinomas, which contributes to carcinomas metastasis through Snail-induced epithelial-to-mesenchymal transition signal pathway. The purpose of this study was to investigate the signal pathway of microtubule-associated tumor suppressor 1/angiotensin II type 2 receptor-interacting protein-mediated anti-tumor effects. Our data observed that ovarian carcinoma cells exhibited lower expression of angiotensin II type 2 receptor-interacting protein 3a and higher expression of high mobility group AT-hook 2 compared to normal ovarian cells. Restoration of angiotensin II type 2 receptor-interacting protein 3a expression in ovarian carcinoma cells inhibited high mobility group AT-hook 2 expression and exhibited anti-proliferative effects. In addition, angiotensin II type 2 receptor-interacting protein 3a treatment suppressed the phosphorylation of epithelial-to-mesenchymal transition and extracellular signal-regulated kinase in ovarian carcinoma cells. We also observed that angiotensin II type 2 receptor-interacting protein 3a restoration downregulated expression of Snail, E-Cadherin, N-Cadherin, and Vimentin in ovarian carcinoma cells, whereas angiotensin II type 2 receptor-interacting protein 3a knockdown enhanced the phosphorylation of extracellular signal-regulated kinase and epithelial-to-mesenchymal transition. In vivo assay indicated that angiotensin II type 2 receptor-interacting protein 3a inhibited ovarian tumor growth and elevated survival of tumor-bearing immunodeficient mice. Tumor histological analysis indicated that Snail, E-Cadherin, N-Cadherin, and Vimentin expression levels were downregulated via decreasing high mobility group AT-hook 2 expression. Furthermore, upregulation of angiotensin II type 2 receptor-interacting protein 3a impaired the phenotype of extracellular signal-regulated kinase and epithelial-to-mesenchymal transition in ovarian carcinoma cells and tumor tissues. Taken together, angiotensin II type 2 receptor-interacting protein 3a presents potential in suppressing the proliferation and aggressiveness of ovarian carcinoma cells through the high mobility group AT-hook 2-mediated extracellular signal-regulated kinase/epithelial-to-mesenchymal transition signal pathway.
Collapse
Affiliation(s)
- Huang Ping
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| | - Liang Guo
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| | - Jie Xi
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| | - Donghui Wang
- Department of Gynaecology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|