1
|
曹 祎, 高 志, 石 怡, 李 芬, 宋 辉, 张 倩, 赵 雅, 陈 凌, 李 晓, 陈 维. [Study on methods measuring mechanical properties of arterial wall by macroscopic indentation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:469-475. [PMID: 38932532 PMCID: PMC11208641 DOI: 10.7507/1001-5515.202310062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Indexed: 06/28/2024]
Abstract
Accurately evaluating the local biomechanics of arterial wall is crucial for diagnosing and treating arterial diseases. Indentation measurement can be used to evaluate the local mechanical properties of the artery. However, the effects of the indenter's geometric structure and the analysis theory on measurement results remain uncertain. In this paper, four kinds of indenters were used to measure the pulmonary aorta, the proximal thoracic aorta and the distal thoracic aorta in pigs, and the arterial elastic modulus was calculated by Sneddon and Sirghi theory to explore the influence of the indenter geometry and analysis theory on the measured elastic modulus. The results showed that the arterial elastic modulus measured by cylindrical indenter was lower than that measured by spherical indenter. In addition, compared with the calculated results of Sirghi theory, the Sneddon theory, which does not take adhesion forces in account, resulted in slightly larger elastic modulus values. In conclusion, this study provides parametric support for effective measurement of arterial local mechanical properties by millimeter indentation technique.
Collapse
Affiliation(s)
- 祎凡 曹
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 志鹏 高
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 怡柯 石
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 芬 李
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
- 太原理工大学 机械与运载工程学院 (太原 030024)College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 辉 宋
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
- 太原理工大学 机械与运载工程学院 (太原 030024)College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 倩倩 张
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 雅威 赵
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 凌峰 陈
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 晓娜 李
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 维毅 陈
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| |
Collapse
|
2
|
Mascarenhas JB, Gaber AA, Larrinaga TM, Mayfield R, Novak S, Camp SM, Gregorio C, Jacobson JR, Cress AE, Dudek SM, Garcia JGN. EVL is a novel focal adhesion protein involved in the regulation of cytoskeletal dynamics and vascular permeability. Pulm Circ 2021; 11:20458940211049002. [PMID: 34631011 PMCID: PMC8493322 DOI: 10.1177/20458940211049002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Increases in lung vascular permeability is a cardinal feature of inflammatory disease and represents an imbalance in vascular contractile forces and barrier-restorative forces, with both forces highly dependent upon the actin cytoskeleton. The current study investigates the role of Ena-VASP-like (EVL), a member of the Ena-VASP family known to regulate the actin cytoskeleton, in regulating vascular permeability responses and lung endothelial cell barrier integrity. Utilizing changes in transendothelial electricial resistance (TEER) to measure endothelial cell barrier responses, we demonstrate that EVL expression regulates endothelial cell responses to both sphingosine-1-phospate (S1P), a vascular barrier-enhancing agonist, and to thrombin, a barrier-disrupting stimulus. Total internal reflection fluorescence demonstrates that EVL is present in endothelial cell focal adhesions and impacts focal adhesion size, distribution, and the number of focal adhesions generated in response to S1P and thrombin challenge, with the focal adhesion kinase (FAK) a key contributor in S1P-stimulated EVL-transduced endothelial cell but a limited role in thrombin-induced focal adhesion rearrangements. In summary, these data indicate that EVL is a focal adhesion protein intimately involved in regulation of cytoskeletal responses to endothelial cell barrier-altering stimuli. Keywords: cytoskeleton, vascular barrier, sphingosine-1-phosphate, thrombin, focal adhesion kinase (FAK), Ena-VASP like protein (EVL), cytoskeletal regulatory protein
Collapse
Affiliation(s)
| | - Amir A Gaber
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Tania M Larrinaga
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Rachel Mayfield
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stefanie Novak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Carol Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Steven M Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Warboys CM, Weinberg PD. S1P in the development of atherosclerosis: roles of hemodynamic wall shear stress and endothelial permeability. Tissue Barriers 2021; 9:1959243. [PMID: 34542010 DOI: 10.1080/21688370.2021.1959243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Atherosclerosis is characterized by focal accumulations of lipid within the arterial wall, thought to arise from effects of hemodynamic wall shear stress (WSS) on endothelial permeability. Identifying pathways that mediate the effects of shear on permeability could therefore provide new therapeutic opportunities. Here, we consider whether the sphingosine-1-phosphate (S1P) pathway could constitute such a route. We review effects of S1P in endothelial barrier function, the influence of WSS on S1P production and signaling, the results of trials investigating S1P in experimental atherosclerosis in mice, and associations between S1P levels and cardiovascular disease in humans. Although it seems clear that S1P reduces endothelial permeability and responds to WSS, the evidence that it influences atherosclerosis is equivocal. The effects of specifically pro- and anti-atherosclerotic WSS profiles on the S1P pathway require investigation, as do influences of S1P on the vesicular pathways likely to dominate low-density lipoprotein transport across endothelium.
Collapse
Affiliation(s)
- Christina M Warboys
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Arefi SMA, Yang CWT, Sin DD, Feng JJ. A mechanical test of the tenertaxis hypothesis for leukocyte diapedesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:93. [PMID: 34236552 PMCID: PMC8264968 DOI: 10.1140/epje/s10189-021-00096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
As part of the immune response, leukocytes can directly transmigrate through the body of endothelial cells or through the gap between adjacent endothelial cells. These are known, respectively, as the transcellular and paracellular route of diapedesis. What determines the usage of one route over the other is unclear. A recently proposed tenertaxis hypothesis claims that leukocytes choose the path with less mechanical resistance against leukocyte protrusions. We examined this hypothesis using numerical simulation of the mechanical resistance during paracellular and transcellular protrusions. By using parameters based on human lung endothelium, our results show that the required force to breach the endothelium through the transcellular route is greater than paracellular route, in agreement with experiments. Moreover, experiments have demonstrated that manipulation of the relative strength between the two routes can make the transcellular route preferable. Our simulations have demonstrated this reversal and thus tentatively confirmed the hypothesis of tenertaxis.
Collapse
Affiliation(s)
- S M Amin Arefi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Cheng Wei Tony Yang
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| |
Collapse
|
5
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
6
|
Wang T, Brown ME, Kelly GT, Camp SM, Mascarenhas JB, Sun X, Dudek SM, Garcia JGN. Myosin light chain kinase ( MYLK) coding polymorphisms modulate human lung endothelial cell barrier responses via altered tyrosine phosphorylation, spatial localization, and lamellipodial protrusions. Pulm Circ 2018; 8:2045894018764171. [PMID: 29480069 PMCID: PMC5846938 DOI: 10.1177/2045894018764171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive endogenous lipid that signals a rearrangement of the actin cytoskeleton via the regulation of non-muscle myosin light chain kinase isoform (nmMLCK). S1P induces critical nmMLCK Y464 and Y471 phosphorylation resulting in translocation of nmMLCK to the periphery where spatially-directed increases in myosin light chain (MLC) phosphorylation and tension result in lamellipodia protrusion, increased cell-cell adhesion, and enhanced vascular barrier integrity. MYLK, the gene encoding nmMLCK, is a known candidate gene in lung inflammatory diseases, with coding genetic variants (Pro21His, Ser147Pro, Val261Ala) that confer risk for inflammatory lung injury and influence disease severity. The functional mechanisms by which these MYLK coding single nucleotide polymorphisms (SNPs) affect biologic processes to increase disease risk and severity remain elusive. In the current study, we utilized quantifiable cell immunofluorescence assays to determine the influence of MYLK coding SNPs on S1P-mediated nmMLCK phosphorylation and translocation to the human lung endothelial cell (EC) periphery . These disease-associated MYLK variants result in reduced levels of S1P-induced Y464 phosphorylation, a key site for nmMLCK enzymatic regulation and activation. Reduced Y464 phosphorylation resulted in attenuated nmMLCK protein translocation to the cell periphery. We further conducted EC kymographic assays which confirmed that lamellipodial protrusion in response to S1P challenge was retarded by expression of a MYLK transgene harboring the three MYLK coding SNPs. These data suggest that ARDS/severe asthma-associated MYLK SNPs functionally influence vascular barrier-regulatory cytoskeletal responses via direct alterations in the levels of nmMLCK tyrosine phosphorylation, spatial localization, and lamellipodial protrusions.
Collapse
Affiliation(s)
- Ting Wang
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Mary E Brown
- 2 Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Gabriel T Kelly
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joseph B Mascarenhas
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Xiaoguang Sun
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Steven M Dudek
- 2 Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| |
Collapse
|