1
|
Huang CJ, Lyu X, Kang J. The molecular characteristics and functional roles of microspherule protein 1 (MCRS1) in gene expression, cell proliferation, and organismic development. Cell Cycle 2023; 22:619-632. [PMID: 36384428 PMCID: PMC9980701 DOI: 10.1080/15384101.2022.2145816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accurate spatial and temporal regulation of cell cycle progression is essential for cell proliferation and organismic development. This review demonstrates the role of microspherule protein 58kD, commonly known as MCRS1, as a key cell cycle regulator of higher eukaryotic organisms. We discuss the isoforms and functional domains of MCRS1 as well as their subcellular localization at specific stages of the cell cycle. These molecular characteristics reveal MCRS1's dynamic regulatory role in gene expression, genome stability, cell proliferation, and organismic development. Furthermore, we discuss the molecular details of its seemingly opposite, tumor-suppressive or tumor-promoting, role in different types of cancer.
Collapse
Affiliation(s)
| | - Xiaoai Lyu
- Arts and Science, New York University Shanghai, Shanghai, China
- Graduate School of Arts and Science, New York University, New York, USA
| | - Jungseog Kang
- Arts and Science, New York University Shanghai, Shanghai, China
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, Shanghai, China
| |
Collapse
|
2
|
Keer S, Cousin H, Jourdeuil K, Neilson KM, Tavares ALP, Alfandari D, Moody SA. Mcrs1 is required for branchial arch and cranial cartilage development. Dev Biol 2022; 489:62-75. [PMID: 35697116 PMCID: PMC10426812 DOI: 10.1016/j.ydbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.
Collapse
Affiliation(s)
- Stephanie Keer
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Helene Cousin
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA
| | - Dominique Alfandari
- Department of Animal Science, University of Massachusetts Amherst, Integrated Science Building, 661 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC, 20037, USA.
| |
Collapse
|
3
|
Gomes AL, Matos-Rodrigues GE, Frappart PO, Martins RAP. RINT1 Loss Impairs Retinogenesis Through TRP53-Mediated Apoptosis. Front Cell Dev Biol 2020; 8:711. [PMID: 32850831 PMCID: PMC7406574 DOI: 10.3389/fcell.2020.00711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023] Open
Abstract
Genomic instability in the central nervous system (CNS) is associated with defective neurodevelopment and neurodegeneration. Congenital human syndromes that affect the CNS development originate from mutations in genes of the DNA damage response (DDR) pathways. RINT1 (Rad50-interacting protein 1) is a partner of RAD50, that participates in the cellular responses to DNA double-strand breaks (DSB). Recently, we showed that Rint1 regulates cell survival in the developing brain and its loss led to premature lethality associated with genomic stability. To bypass the lethality of Rint1 inactivation in the embryonic brain and better understand the roles of RINT1 in CNS development, we conditionally inactivated Rint1 in retinal progenitor cells (RPCs) during embryogenesis. Rint1 loss led to accumulation of endogenous DNA damage, but RINT1 was not necessary for the cell cycle checkpoint activation in these neural progenitor cells. As a consequence, proliferating progenitors and postmitotic neurons underwent apoptosis causing defective neurogenesis of retinal ganglion cells, malformation of the optic nerve and blindness. Notably, inactivation of Trp53 prevented apoptosis of the RPCs and rescued the generation of retinal neurons and vision loss. Together, these results revealed an essential role for TRP53-mediated apoptosis in the malformations of the visual system caused by RINT1 loss and suggests that defective responses to DNA damage drive retinal malformations.
Collapse
Affiliation(s)
- Anielle L Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Expression of Rta in B Lymphocytes during Epstein-Barr Virus Latency. J Mol Biol 2020; 432:5227-5243. [PMID: 32710985 DOI: 10.1016/j.jmb.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
Abstract
Rta of Epstein-Barr virus (EBV) is thought to be expressed only during the lytic cycle to promote the transcription of lytic genes. However, we found that Rta is expressed in EBV-infected B cells during viral latency, at levels detectable by immunoblot analysis. Latent Rta expression cannot be attributed to spontaneous lytic activation, as we observed that more than 90% of Akata, P3HR1, and 721 cells latently infected by EBV express Rta. We further found that Rta is sequestered in the nucleolus during EBV latency through its interaction with MCRS2, a nucleolar protein. When Rta is sequestered in the nucleolus, it no longer activates RNA polymerase II-driven transcription, thus explaining why Rta expression during latency does not transactivate EBV lytic genes. Additional experiments showed that Rta can bind to 18S rRNA and become incorporated into ribosomes, and a transient transfection experiment showed that Rta promotes translation from an mRNA reporter. These findings reveal that Rta has novel functions beyond transcriptional activation during EBV latency and may have interesting implications for the concept of EBV latency.
Collapse
|