1
|
Mao R, Zhou F, Hong Y, Li Y, Zhu C, Jin L, Li S. CRH upregulates supervillin through ERK and AKT pathways to promote bladder cancer cell migration. Cell Biol Int 2024; 48:1743-1754. [PMID: 39090812 DOI: 10.1002/cbin.12227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Corticotropin-releasing hormone (CRH) has been well documented playing a role in the regulation of cellular processes, immune responses, and inflammatory processes that can influence the occurrence and development of tumors. Supervillin (SVIL) is a membrane-associated and actin-binding protein, which is actively involved in the proliferation, spread, and migration of cancer cells. This work investigated CRH's influence on bladder cancer cells' migration and relevant mechanisms. By using human bladder cancer cells T24 and RT4 in wound healing experiments and transwell assay, we found that the migration ability of the T24 cells was significantly increased after CRH treatment. In vivo experiments showed that CRH significantly promoted the metastases of T24 cells in cell line-derived xenograft (CDX) mouse model. Interestingly, downregulation of SVIL by SVIL-specifc small hairpin RNAs significantly reduced the promoting effect of CRH on bladder cancer cell migration. Furthermore, CRH significantly increased SVIL messenger RNA and protein expression in T24 cells, accompanied with AKT and ERK phosphorylation in T24 cells. Pretreatment with AKT inhibitor (MK2206) blocked the CRH-induced SVIL expression and ERK phosphorylation. Also, inhibition of ERK signaling pathway by U0126 significantly reduced the CRH-induced SVIL expression and AKT phosphorylation. It suggested that cross-talking between AKT and ERK pathways was involved in the effect of CRH on SVIL. Taken together, we demonstrated that CRH induced migration of bladder cancer cells, in which AKT and ERK pathways -SVIL played a key role.
Collapse
Affiliation(s)
- Rongchen Mao
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Feier Zhou
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yali Hong
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yongqi Li
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Chao Zhu
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lai Jin
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shengnan Li
- Department of Pharmacology, Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Dai D, Li C, Xia H, Qi C, Lyu M, Yao Z, Zhang F, Zhu Y, Qi M, Cao X. SVIL promotes ovarian cancer progression and epithelial-mesenchymal transition under hypoxic conditions through the TGF-β/Smad pathway. Gynecol Oncol 2024; 190:167-178. [PMID: 39197416 DOI: 10.1016/j.ygyno.2024.07.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE Ovarian cancer is the malignant tumor with the highest mortality rate in gynecology. We aimed to identify novel genes that promote ovarian cancer progression and epithelial-mesenchymal transition under hypoxic conditions. METHODS We screened SVIL as a hypoxia-associated target in ovarian cancer and explored the related molecular mechanisms. We assessed the effects of SVIL on ovarian cancer progression and metastasis in clinical samples and cellular hypoxia models. Further, we investigated the relevant pathways of SVIL and confirmed the effects of SVIL on ovarian cancer progression by using nude mouse in situ tumor models. RESULTS We found that SVIL was significantly highly expressed in the hypoxic environment of ovarian cancer, and SVIL expression correlated with patient prognosis.CCK8, Wound-healing assay, Transwell assay, Western Blot, and apoptosis assays revealed that knockdown of SVIL inhibited the activation of the TGFβ1/smad2/3 pathway, which attenuated the progression and epithelial-mesenchymal transition(EMT) of ovarian cancer and alleviated cisplatin resistance by increasing cisplatin-induced apoptosis. Furthermore, in a nude mouse ovarian cancer in situ model, we found that the knockdown of SVIL significantly inhibited tumor growth and metastasis. CONCLUSION SVIL highly expressed in the hypoxic microenvironment can increase ovarian cancer progression and cisplatin resistance by activating TGFβ1/smad2/3 pathway. Our study demonstrated that SVIL may be a novel target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Dongfang Dai
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Congzhu Li
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China.
| | - Hongping Xia
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University & School of Chemistry and Chemical Engineering, Nanjing 210009, China; The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China.
| | - Chenxue Qi
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China; Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University & School of Chemistry and Chemical Engineering, Nanjing 210009, China; The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Mengmeng Lyu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Zhipeng Yao
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Fan Zhang
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University & School of Chemistry and Chemical Engineering, Nanjing 210009, China; The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Yan Zhu
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Min Qi
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| | - Xiaoxiang Cao
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu 241000, China
| |
Collapse
|
3
|
Nie Z, Guo N, Peng Y, Gao Y, Cao H, Zhang S. Duality of the SVIL expression in bladder cancer and its correlation with immune infiltration. Sci Rep 2023; 13:14595. [PMID: 37670039 PMCID: PMC10480233 DOI: 10.1038/s41598-023-41759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
SVIL is a member of the villin/gelsolin superfamily and is responsible for encoding supervillin. It has been reported to be closely related to the occurrence and development of various tumors. However, the mechanism of SVIL in bladder cancer has not been reported yet. In this research, we evaluated the relationship between SVIL expression and bladder cancer in public dataset and examined the expression of SVIL in bladder cancer cell lines, tissue microarrays and patients in our cohort. Our work determined that the expression of SVIL in bladder cancer tissue was significantly lower than that in normal tissue. However, in bladder cancer tissues, the high expression of SVIL is significantly associated with poor prognosis. This kind of duality is very novel and has great research value. The expression level of SVIL can well predict the survival time of bladder cancer patients, and is an independent risk factor of bladder cancer patients. The expression of SVIL is also closely related to the immune tumor microenvironment of bladder cancer. Our research provides a basis for personalized therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| |
Collapse
|
4
|
Luo X, Liang M, Huang S, Xue Q, Ren X, Li Y, Wang J, Shi D, Li X. iTRAQ-based comparative proteomics reveal an enhancing role of PRDX6 in the freezability of Mediterranean buffalo sperm. BMC Genomics 2023; 24:245. [PMID: 37147584 PMCID: PMC10163707 DOI: 10.1186/s12864-023-09329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/22/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Semen cryopreservation is a critical tool for breed improvement and preservation of biodiversity. However, instability of sperm freezability affects its application. The Mediterranean buffalo is one of the river-type buffaloes with the capacity for high milk production. Until now, there is no specific cryopreservation system for Mediterranean buffalo, which influences the promotion of excellent cultivars. To improve the semen freezing extender used in cryopreservation of Mediterranean buffalo, different protein datasets relating to freezability sperm were analyzed by iTRAQ-based proteomics. This study will be beneficial for further understanding the sperm freezability mechanism and developing new cryopreservation strategy for buffalo semen. RESULTS 2652 quantified proteins were identified, including 248 significantly differentially expressed proteins (DEP). Gene Ontology (GO) analysis indicated that many these were mitochondrial proteins, enriched in the molecular function of phospholipase A2 activity and enzyme binding, and biological processes of regulation of protein kinase A signaling and motile cilium assembly. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis identified 17 significant pathways, including oxidative phosphorylation (OXPHOS). Furthermore, 7 DEPs were verified using parallel reaction monitoring or western blot, which confirmed the accuracy of the iTRAQ data. Peroxiredoxin 6 (PRDX6), which expressed 1.72-fold higher in good freezability ejaculate (GFE) compared to poor freezability ejaculate (PFE) sperms, was selected to explore the function in sperm freezability by adding recombinant PRDX6 protein into the semen freezing extender. The results showed that the motility, mitochondrial function and in vitro fertilization capacity of frozen-thawed sperm were significantly increased, while the oxidation level was significantly decreased when 0.1 mg/L PRDX6 was added compared with blank control. CONCLUSIONS Above results revealed the metabolic pattern of freezability of Mediterranean buffalo sperms was negatively associated with OXPHOS, and PRDX6 had protective effect on cryo-damage of frozen-thawed sperms.
Collapse
Affiliation(s)
- Xi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Mingming Liang
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, Guangxi, China
| | - Shihai Huang
- College of life science and technology, Guangxi University, Nanning, China
| | - Qingsong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Xuan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Yanfang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Jinli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
5
|
Zhou J, Que Y, Pan L, Li X, Zhu C, Jin L, Li S. Supervillin Contributes to LPS-induced Inflammatory Response in THP-1 Cell-derived Macrophages. Inflammation 2021; 45:356-371. [PMID: 34480249 DOI: 10.1007/s10753-021-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Supervillin (SVIL) is an actin-binding and membrane-associated protein, which belongs to villin/gelsolin family. It has been reported that SVIL was involved in the regulation of macrophages' movement and lipopolysaccharide (LPS) increased the SVIL mRNA expression in neutrophils, but the underlying mechanisms remain unknown. This work investigated the underlying molecular mechanisms of LPS regulating SVIL expression in macrophages and hence the possible role of SVIL in LPS-induced inflammation. We found that in THP-1-derived macrophages, LPS obviously increased SVIL mRNA and protein expression. Inhibition of TLR4 by Resatorvid (Res) remarkably reversed the LPS-induced SVIL expression. Additionally, inhibition of ERK1/2 signaling pathway (by U0126 or GDC-0994) and NF-κB (by BAY) significantly reduced the LPS-induced SVIL expression. Interestingly, down-regulation of SVIL by SVIL-specific shRNAs significantly attenuated the expression of IL-6, IL-1β & TNF-α induced by LPS at both mRNA and protein levels. Furthermore, we also observed that SVIL knockdown decreased the proportion of cells in G2/M phase and increased the proportion of cells in S & G0-1 phase of THP-1 derived macrophages, but did not influence the cell viability. Taken together, we demonstrated that LPS induced the expression of SVIL via activating TLR4/NF-κB and ERK1/2 MAPK pathways, and SVIL participated in the inflammatory response of LPS-induced IL-6, IL-1β and TNF-α upregulation in macrophages.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China.
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Longmian Dadao 101, Nanjing, 211166, China.
| |
Collapse
|
6
|
Hedberg-Oldfors C, Meyer R, Nolte K, Abdul Rahim Y, Lindberg C, Karason K, Thuestad IJ, Visuttijai K, Geijer M, Begemann M, Kraft F, Lausberg E, Hitpass L, Götzl R, Luna EJ, Lochmüller H, Koschmieder S, Gramlich M, Gess B, Elbracht M, Weis J, Kurth I, Oldfors A, Knopp C. Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles. Brain 2020; 143:2406-2420. [PMID: 32779703 PMCID: PMC7447519 DOI: 10.1093/brain/awaa206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
The muscle specific isoform of the supervillin protein (SV2), encoded by the SVIL gene, is a large sarcolemmal myosin II- and F-actin-binding protein. Supervillin (SV2) binds and co-localizes with costameric dystrophin and binds nebulin, potentially attaching the sarcolemma to myofibrillar Z-lines. Despite its important role in muscle cell physiology suggested by various in vitro studies, there are so far no reports of any human disease caused by SVIL mutations. We here report four patients from two unrelated, consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. All patients showed increased levels of serum creatine kinase but no or minor muscle weakness. Mild cardiac manifestations were observed. Muscle biopsies showed complete loss of large supervillin isoforms in muscle fibres by western blot and immunohistochemical analyses. Light and electron microscopic investigations revealed a structural myopathy with numerous lobulated muscle fibres and considerable myofibrillar alterations with a coarse and irregular intermyofibrillar network. Autophagic vacuoles, as well as frequent and extensive deposits of lipoproteins, including immature lipofuscin, were observed. Several sarcolemma-associated proteins, including dystrophin and sarcoglycans, were partially mis-localized. The results demonstrate the importance of the supervillin (SV2) protein for the structural integrity of muscle fibres in humans and show that recessive loss-of-function mutations in SVIL cause a distinctive and novel myopathy.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Meyer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kay Nolte
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yassir Abdul Rahim
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Centre, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristjan Karason
- Department of Cardiology and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Kittichate Visuttijai
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Geijer
- Department of Radiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Eva Lausberg
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Lea Hitpass
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rebekka Götzl
- Department of Plastic Surgery, Hand and Burn Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Elizabeth J Luna
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, USA
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Gramlich
- Department of Invasive Electrophysiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Burkhard Gess
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anders Oldfors
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cordula Knopp
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Zhao C, Zhao Z, Wang Z, Hu L, Wang H, Fang Z. Supervillin promotes tumor angiogenesis in liver cancer. Oncol Rep 2020; 44:674-684. [PMID: 32468064 PMCID: PMC7336518 DOI: 10.3892/or.2020.7621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor angiogenesis is a hallmark of liver cancer and is necessary for tumor growth and progression. Supervillin (SVIL) is highly expressed and implicated in several malignant processes of liver cancer. However, the functional relationships between SVIL and tumor angiogenesis in liver cancer have not yet been fully elucidated. The present study was based on bioinformatics analysis, patient tissue sample detection, three-dimensional simulated blood vessel formation, a series of cytological experiments and mouse models. The results demonstrated the important role of SVIL in the progression of malignant liver cancer and tumor angiogenesis, both in terms of vasculogenic mimicry (VM) and endothelium-dependent vessel (EDV) development. SVIL knockdown inhibited VM formation and induced tumor cell apoptosis via the VEGF-p38 signaling axis and through various VM-associated transcriptional factors, including vascular endothelial-cadherin, matrix metalloproteinase 9/12 and migration-inducing protein 7. SVIL may therefore be considered a potential tumor vascular biomarker and a promising therapeutic target for patients with liver cancer.
Collapse
Affiliation(s)
- Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhen Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
8
|
Houlier A, Pissaloux D, Masse I, Tirode F, Karanian M, Pincus LB, McCalmont TH, LeBoit PE, Bastian BC, Yeh I, de la Fouchardière A. Melanocytic tumors with MAP3K8 fusions: report of 33 cases with morphological-genetic correlations. Mod Pathol 2020; 33:846-857. [PMID: 31719662 DOI: 10.1038/s41379-019-0384-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
Abstract
We report a series of 33 skin tumors harboring a gene fusion of the MAP3K8 gene, which encodes a serine/threonine kinase. The MAP3K8 fusions were identified by RNA sequencing in 28 cases and by break-apart FISH in five cases. Cases in which fusion genes were fully characterized demonstrated a fusion of the 5' part of MAP3K8 comprising exons 1-8 in frame to one of several partner genes at the 3' end. The fusion genes invariably encoded the intact kinase domain of MAP3K8, but not the inhibitory domain at the C-terminus. In 13 (46%) of the sequenced cases, the 3' fusion partner was SVIL. Other recurrent 3' partners were DIP2C and UBL3, with additional fusion partners that occurred only in a single tumor. Clinically, the lesions appeared mainly in young adults (2-59 years of age; median = 18), most commonly involving the lower limbs (55%). Five cases were diagnosed as Spitz nevus, 13 as atypical Spitz tumor, and 15 as malignant Spitz tumor. Atypical and malignant cases more commonly occurred in younger patients. Atypical Spitz tumors and malignant Spitz tumors cases tended to show epidermal ulceration (32%), a dermal component with giant multinucleated cells (32%), and clusters of pigmented cells in the dermis (32%). Moreover, in atypical and malignant cases, a frequent inactivation of CDKN2A (21/26; 77%) was identified either by p16 immunohistochemistry, FISH, or comparative genomic hybridization. Gene expression analysis revealed that MAP3K8 expression levels were significantly elevated compared to a control group of 57 Spitz lesions harboring other known kinase fusions. Clinical follow-up revealed regional nodal involvement in two of six cases, in which sentinel lymph node biopsy was performed but no distant metastatic disease after a median follow-up time of 6 months.
Collapse
Affiliation(s)
- Aurelie Houlier
- Department of Biopathology, Centre Léon Bérard, Lyon, France.,University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5286, INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Daniel Pissaloux
- Department of Biopathology, Centre Léon Bérard, Lyon, France.,University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5286, INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Ingrid Masse
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5286, INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Franck Tirode
- University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5286, INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Marie Karanian
- Department of Biopathology, Centre Léon Bérard, Lyon, France.,University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5286, INSERM U1052, Cancer Research Centre of Lyon, Lyon, France
| | - Laura B Pincus
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Timothy H McCalmont
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Philip E LeBoit
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Arnaud de la Fouchardière
- Department of Biopathology, Centre Léon Bérard, Lyon, France. .,University of Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5286, INSERM U1052, Cancer Research Centre of Lyon, Lyon, France.
| |
Collapse
|
9
|
Strawbridge RJ, Ward J, Bailey ME, Cullen B, Ferguson A, Graham N, Johnston KJ, Lyall LM, Pearsall R, Pell J, Shaw RJ, Tank R, Lyall DM, Smith DJ. Carotid Intima-Media Thickness: Novel Loci, Sex-Specific Effects, and Genetic Correlations With Obesity and Glucometabolic Traits in UK Biobank. Arterioscler Thromb Vasc Biol 2020; 40:446-461. [PMID: 31801372 PMCID: PMC6975521 DOI: 10.1161/atvbaha.119.313226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Atherosclerosis is the underlying cause of most cardiovascular disease, but mechanisms underlying atherosclerosis are incompletely understood. Ultrasound measurement of the carotid intima-media thickness (cIMT) can be used to measure vascular remodeling, which is indicative of atherosclerosis. Genome-wide association studies have identified many genetic loci associated with cIMT, but heterogeneity of measurements collected by many small cohorts have been a major limitation in these efforts. Here, we conducted genome-wide association analyses in UKB (UK Biobank; N=22 179), the largest single study with consistent cIMT measurements. Approach and Results: We used BOLT-LMM software to run linear regression of cIMT in UKB, adjusted for age, sex, and genotyping chip. In white British participants, we identified 5 novel loci associated with cIMT and replicated most previously reported loci. In the first sex-specific analyses of cIMT, we identified a locus on chromosome 5, associated with cIMT in women only and highlight VCAN as a good candidate gene at this locus. Genetic correlations with body mass index and glucometabolic traits were also observed. Two loci influenced risk of ischemic heart disease. CONCLUSIONS These findings replicate previously reported associations, highlight novel biology, and provide new directions for investigating the sex differences observed in cardiovascular disease presentation and progression.
Collapse
Affiliation(s)
- Rona J. Strawbridge
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Joey Ward
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Mark E.S. Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences (M.E.S.B., K.J.A.J.), University of Glasgow, United Kingdom
| | - Breda Cullen
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Amy Ferguson
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Nicholas Graham
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Keira J.A. Johnston
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
- School of Life Sciences, College of Medical, Veterinary and Life Sciences (M.E.S.B., K.J.A.J.), University of Glasgow, United Kingdom
- Division of Psychiatry, College of Medicine, University of Edinburgh, United Kingdom (K.J.A.J.)
| | - Laura M. Lyall
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Robert Pearsall
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Jill Pell
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Richard J. Shaw
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
- Health Data Research United Kingdom (R.J.S.)
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden (R.J.S.)
| | - Rachana Tank
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Donald M. Lyall
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| | - Daniel J. Smith
- From the Institute of Health and Wellbeing (R.J.S., J.W., B.C., A.F., N.G., K.J.A.J., L.M.L., R.P., J.P., R.J.S., R.T., D.M.L., D.J.S.), University of Glasgow, United Kingdom
| |
Collapse
|
10
|
Smith TC, Saul RG, Barton ER, Luna EJ. Generation and characterization of monoclonal antibodies that recognize human and murine supervillin protein isoforms. PLoS One 2018; 13:e0205910. [PMID: 30332471 PMCID: PMC6192639 DOI: 10.1371/journal.pone.0205910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Supervillin isoforms have been implicated in cell proliferation, actin filament-based motile processes, vesicle trafficking, and signal transduction. However, an understanding of the roles of these proteins in cancer metastasis and physiological processes has been limited by the difficulty of obtaining specific antibodies against these highly conserved membrane-associated proteins. To facilitate research into the biological functions of supervillin, monoclonal antibodies were generated against the bacterially expressed human supervillin N-terminus. Two chimeric monoclonal antibodies with rabbit Fc domains (clones 1E2/CPTC-SVIL-1; 4A8/CPTC-SVIL-2) and two mouse monoclonal antibodies (clones 5A8/CPTC-SVIL-3; 5G3/CPTC-SVIL-4) were characterized with respect to their binding sites, affinities, and for efficacy in immunoblotting, immunoprecipitation, immunofluorescence microscopy and immunohistochemical staining. Two antibodies (1E2, 5G3) recognize a sequence found only in primate supervillins, whereas the other two antibodies (4A8, 5A8) are specific for a more broadly conserved conformational epitope(s). All antibodies function in immunoblotting, immunoprecipitation and in immunofluorescence microscopy under the fixation conditions identified here. We also show that the 5A8 antibody works on immunohistological sections. These antibodies should provide useful tools for the study of mammalian supervillins.
Collapse
Affiliation(s)
- Tara C. Smith
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Richard G. Saul
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD, United States of America
| | - Elisabeth R. Barton
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, United States of America
| | - Elizabeth J. Luna
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chen X, Zhang S, Wang Z, Wang F, Cao X, Wu Q, Zhao C, Ma H, Ye F, Wang H, Fang Z. Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:128. [PMID: 29954442 PMCID: PMC6025706 DOI: 10.1186/s13046-018-0787-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/07/2018] [Indexed: 01/27/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with HCC. Hypoxia triggers the epithelial-mesenchymal transition (EMT) of cancer cells, which enhances their malignant character and elevates metastatic risk. Supervillin associates tightly with the membrane and cytoskeleton, promoting cell motility, invasiveness, and cell survival. However, the roles of supervillin in HCC metastasis remain unclear. Methods Tissue microarray technology was used to immunohistochemically stain for supervillin antibody in 173 HCC tissue specimens and expression levels correlated with the clinicopathological variables. Tumor cell motility and invasiveness, as well as changes in the mRNA expression levels of genes associated with cancer cell EMT, were investigated. The relationship between supervillin and Rho GTPases was examined using Co-IP and GST pull-down. Results Hypoxia-induced upregulation of supervillin promoted cancer cell migration and invasion via the activation of the ERK/p38 pathway downstream of RhoA/ROCK signaling. Furthermore, supervillin regulated the expression of EMT genes during hypoxia and accelerated the metastasis of HCC in vivo. Conclusions Hypoxia-induced increase in supervillin expression is a significant and independent predictor of cancer metastasis, which leads to poor survival in HCC patients. Our results suggest that supervillin may be a candidate prognostic factor for HCC and a valuable target for therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0787-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Shangrong Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhen Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Xinwang Cao
- School of Life Science, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Quan Wu
- Central Laboratory of Medical Research Center, Anhui Provincial Hospital, No. 17, Lu Jiang Road, Hefei, 230001, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Huihui Ma
- University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.,Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Fang Ye
- Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
12
|
Zhang X, Liu J, Li Z. Na +/H + exchanger regulatory factor 1 overexpression suppresses the malignant phenotype of MIAPaCa-2 pancreatic adenocarcinoma cells by downregulating Akt phosphorylation. Oncol Lett 2018; 15:7725-7729. [PMID: 29725468 PMCID: PMC5920473 DOI: 10.3892/ol.2018.8289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 10/26/2017] [Indexed: 01/18/2023] Open
Abstract
Na+/H+ exchanger regulatory factor 1 (NHERF1) is reported to be associated with the development of numerous types of tumor; however, its effects on the metastasis of pancreatic adenocarcinoma are not fully understood. In the present study, it was revealed that the expression level of NHERF1 in pancreatic adenocarcinoma is decreased compared with normal pancreatic tissue based on the analysis of a protein expression database. The present study was undertaken in order to investigate the potential effects of NHERF1 overexpression on the malignant phenotype of MIAPaCa-2 pancreatic adenocarcinoma cells. NHERF1 was stably overexpressed in this cell line, and Cell Counting Kit-8, wound healing and Transwell assays were used to detect the proliferative and migratory abilities of the cells. NHERF1 overexpression suppressed proliferation in the MIAPaCa-2 cell line compared with empty vector-transfected (negative control) cells. Additionally, NHERF1 overexpression significantly inhibited the migration of MIAPaCa-2 cells. The results of a western blot analysis identified that NHERF1 overexpression markedly decreased the expression of phosphorylated-protein kinase B (p-Akt), while no significant difference was observed between untransfected and negative control cells. Taken together, these results suggested that NHERF1 may be able to inhibit the proliferation and migration and alter the malignant phenotype of pancreatic adenocarcinoma cells via reduction of p-Akt levels. These findings indicate a potential novel approach to the treatment of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Xibo Zhang
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Junjian Liu
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Zhonglian Li
- Department of Hepatopancreatobiliary Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|