1
|
Zhong Y, Zhong X, Qiao L, Wu H, Liu C, Zhang T. Zα domain proteins mediate the immune response. Front Immunol 2023; 14:1241694. [PMID: 37771585 PMCID: PMC10523160 DOI: 10.3389/fimmu.2023.1241694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Zα domain has a compact α/β architecture containing a three-helix bundle flanked on one side by a twisted antiparallel β sheet. This domain displays a specific affinity for double-stranded nucleic acids that adopt a left-handed helical conformation. Currently, only three Zα-domain proteins have been identified in eukaryotes, specifically ADAR1, ZBP1, and PKZ. ADAR1 is a double-stranded RNA (dsRNA) binding protein that catalyzes the conversion of adenosine residues to inosine, resulting in changes in RNA structure, function, and expression. In addition to its editing function, ADAR1 has been shown to play a role in antiviral defense, gene regulation, and cellular differentiation. Dysregulation of ADAR1 expression and activity has been associated with various disease states, including cancer, autoimmune disorders, and neurological disorders. As a sensing molecule, ZBP1 exhibits the ability to recognize nucleic acids with a left-handed conformation. ZBP1 harbors a RIP homotypic interaction motif (RHIM), composed of a highly charged surface region and a leucine-rich hydrophobic core, enabling the formation of homotypic interactions between proteins with similar structure. Upon activation, ZBP1 initiates a downstream signaling cascade leading to programmed cell death, a process mediated by RIPK3 via the RHIM motif. PKZ was identified in fish, and contains two Zα domains at the N-terminus. PKZ is essential for normal growth and development and may contribute to the regulation of immune system function in fish. Interestingly, some pathogenic microorganisms also encode Zα domain proteins, such as, Vaccinia virus and Cyprinid Herpesvirus. Zα domain proteins derived from pathogenic microorganisms have been demonstrated to be pivotal contributors in impeding the host immune response and promoting virus replication and spread. This review focuses on the mammalian Zα domain proteins: ADAR1 and ZBP1, and thoroughly elucidates their functions in the immune response.
Collapse
Affiliation(s)
- Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangjun Qiao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Wu
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Division of Liver, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Diallo MA, Pirotte S, Hu Y, Morvan L, Rakus K, Suárez NM, PoTsang L, Saneyoshi H, Xu Y, Davison A, Tompa P, Sussman J, Vanderplasschen A. A fish herpesvirus highlights functional diversities among Zα domains related to phase separation induction and A-to-Z conversion. Nucleic Acids Res 2022; 51:806-830. [PMID: 36130731 PMCID: PMC9881149 DOI: 10.1093/nar/gkac761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023] Open
Abstract
Zalpha (Zα) domains bind to left-handed Z-DNA and Z-RNA. The Zα domain protein family includes cellular (ADAR1, ZBP1 and PKZ) and viral (vaccinia virus E3 and cyprinid herpesvirus 3 (CyHV-3) ORF112) proteins. We studied CyHV-3 ORF112, which contains an intrinsically disordered region and a Zα domain. Genome editing of CyHV-3 indicated that the expression of only the Zα domain of ORF112 was sufficient for normal viral replication in cell culture and virulence in carp. In contrast, its deletion was lethal for the virus. These observations revealed the potential of the CyHV-3 model as a unique platform to compare the exchangeability of Zα domains expressed alone in living cells. Attempts to rescue the ORF112 deletion by a broad spectrum of cellular, viral, and artificial Zα domains showed that only those expressing Z-binding activity, the capacity to induce liquid-liquid phase separation (LLPS), and A-to-Z conversion, could rescue viral replication. For the first time, this study reports the ability of some Zα domains to induce LLPS and supports the biological relevance of dsRNA A-to-Z conversion mediated by Zα domains. This study expands the functional diversity of Zα domains and stimulates new hypotheses concerning the mechanisms of action of proteins containing Zα domains.
Collapse
Affiliation(s)
| | | | - Yunlong Hu
- Department of Infectious and Parasitic Diseases, Immunology-Vaccinology, University of Liège, Liège B-4000, Belgium
| | - Léa Morvan
- Department of Infectious and Parasitic Diseases, Immunology-Vaccinology, University of Liège, Liège B-4000, Belgium
| | - Krzysztof Rakus
- Department of Infectious and Parasitic Diseases, Immunology-Vaccinology, University of Liège, Liège B-4000, Belgium,Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30387, Poland
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lee PoTsang
- Department of Infectious and Parasitic Diseases, Immunology-Vaccinology, University of Liège, Liège B-4000, Belgium,Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hisao Saneyoshi
- Department of Medical Sciences, Division of Chemistry, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yan Xu
- Department of Medical Sciences, Division of Chemistry, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussel B-1050, Belgium
| | - Joel L Sussman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | |
Collapse
|
3
|
Li L, Zhang Y, Ma W, Chen H, Liu M, An R, Cheng B, Liang X. Nonalternating purine pyrimidine sequences can form stable left-handed DNA duplex by strong topological constraint. Nucleic Acids Res 2021; 50:684-696. [PMID: 34967416 PMCID: PMC8789069 DOI: 10.1093/nar/gkab1283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 11/14/2022] Open
Abstract
In vivo, left-handed DNA duplex (usually refers to Z-DNA) is mainly formed in the region of DNA with alternating purine pyrimidine (APP) sequence and plays significant biological roles. It is well known that d(CG)n sequence can form Z-DNA most easily under negative supercoil conditions, but its essence has not been well clarified. The study on sequence dependence of Z-DNA stability is very difficult without modification or inducers. Here, by the strong topological constraint caused by hybridization of two complementary short circular ssDNAs, left-handed duplex part was generated for various sequences, and their characteristics were investigated by using gel-shift after binding to specific proteins, CD and Tm analysis, and restriction enzyme cleavage. Under the strong topological constraint, non-APP sequences can also form left-handed DNA duplex as stable as that of APP sequences. As compared with non-APP sequences, the thermal stability difference for APP sequences between Z-form and B-form is smaller, which may be the reason that Z-DNA forms preferentially for APP ones. This result can help us to understand why nature selected APP sequences to regulate gene expression by transient Z-DNA formation, as well as why polymer with chirality can usually form both duplexes with left- or right-handed helix.
Collapse
Affiliation(s)
- Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wanzhi Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Bingxiao Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
4
|
Wu C, Zhang Y, Hu C. PKZ, a Fish-Unique eIF2α Kinase Involved in Innate Immune Response. Front Immunol 2020; 11:585. [PMID: 32296447 PMCID: PMC7137213 DOI: 10.3389/fimmu.2020.00585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
PKZ is a novel and unique eIF2α protein kinase identified in fish. Although PKZ is most homologous to PKR, particularly in the C-terminal catalytic domain, it contains two N-terminal Z-DNA-binding domains (Zα1 and Zα2) instead of the dsRNA binding domains (dsRBDs) in PKR. As a novel member of eIF2α kinase family, the available data suggest that PKZ has some distinct mechanisms for recognition, binding, and B-Z DNA transition. Functionally, PKZ seems to be activated by the binding of Zα to Z-DNA and participates in innate immune responses. In this review, we summarize the recent progress on fish PKZ.
Collapse
Affiliation(s)
- Chuxin Wu
- Department of Natural Sciences, Yuzhang Normal University, Nanchang, China
| | - Yibing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Lee AR, Hwang J, Hur JH, Ryu KS, Kim KK, Choi BS, Kim NK, Lee JH. NMR Dynamics Study Reveals the Zα Domain of Human ADAR1 Associates with and Dissociates from Z-RNA More Slowly than Z-DNA. ACS Chem Biol 2019; 14:245-255. [PMID: 30592616 DOI: 10.1021/acschembio.8b00914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human RNA editing enzyme ADAR1 deaminates adenosine in pre-mRNA to yield inosine. The Zα domain of human ADAR1 (hZαADAR1) binds specifically to left-handed Z-RNA as well as Z-DNA and stabilizes the Z-conformation. To answer the question of how hZαADAR1 can induce both the B-Z transition of DNA and the A-Z transition of RNA, we investigated the structure and dynamics of hZαADAR1 in complex with 6-base-pair Z-DNA or Z-RNA. We performed chemical shift perturbation and relaxation dispersion experiments on hZαADAR1 upon binding to Z-DNA as well as Z-RNA. Our study demonstrates the unique dynamics of hZαADAR1 during the A-Z transition of RNA, in which the hZαADAR1 protein forms a thermodynamically stable complex with Z-RNA, similar to Z-DNA, but kinetically converts RNA to the Z-form more slowly than DNA. We also discovered some distinct structural features of hZαADAR1 in the Z-RNA binding conformation. Our results suggest that the A-Z transition of RNA facilitated by hZαADAR1 displays unique structural and dynamic features that may be involved in targeting ADAR1 for a role in recognition of RNA substrates.
Collapse
Affiliation(s)
- Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, South Korea
| | - Jihyun Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jeong Hwan Hur
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Gyeonggi 16419, South Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Team, Korea Basic Science Institute, Chungbuk 28119, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Gyeonggi 16419, South Korea
| | - Byong-Seok Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, South Korea
| |
Collapse
|
6
|
Thermodynamic Model for B-Z Transition of DNA Induced by Z-DNA Binding Proteins. Molecules 2018; 23:molecules23112748. [PMID: 30355979 PMCID: PMC6278649 DOI: 10.3390/molecules23112748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023] Open
Abstract
Z-DNA is stabilized by various Z-DNA binding proteins (ZBPs) that play important roles in RNA editing, innate immune response, and viral infection. In this review, the structural and dynamics of various ZBPs complexed with Z-DNA are summarized to better understand the mechanisms by which ZBPs selectively recognize d(CG)-repeat DNA sequences in genomic DNA and efficiently convert them to left-handed Z-DNA to achieve their biological function. The intermolecular interaction of ZBPs with Z-DNA strands is mediated through a single continuous recognition surface which consists of an α3 helix and a β-hairpin. In the ZBP-Z-DNA complexes, three identical, conserved residues (N173, Y177, and W195 in the Zα domain of human ADAR1) play central roles in the interaction with Z-DNA. ZBPs convert a 6-base DNA pair to a Z-form helix via the B-Z transition mechanism in which the ZBP first binds to B-DNA and then shifts the equilibrium from B-DNA to Z-DNA, a conformation that is then selectively stabilized by the additional binding of a second ZBP molecule. During B-Z transition, ZBPs selectively recognize the alternating d(CG)n sequence and convert it to a Z-form helix in long genomic DNA through multiple sequence discrimination steps. In addition, the intermediate complex formed by ZBPs and B-DNA, which is modulated by varying conditions, determines the degree of B-Z transition.
Collapse
|