1
|
Asgharzadeh F, Memarzia A, Alikhani V, Beigoli S, Boskabady MH. Peroxisome proliferator-activated receptors: Key regulators of tumor progression and growth. Transl Oncol 2024; 47:102039. [PMID: 38917593 PMCID: PMC11254173 DOI: 10.1016/j.tranon.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
One of the main causes of death on the globe is cancer. Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors, including PPARα, PPARδ and PPARγ, which are important in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. PPARs are receiving interest as possible therapeutic targets for a number of disorders. Numerous clinical studies are being conducted on PPARs as possible therapeutic targets for cancer. Therefore, this review will focus on the existing and future uses of PPARs agonists and antagonists in treating malignancies. PubMed, Science Direct, and Scopus databases were searched regarding the effect of PPARs on various types of cancers until the end of May 2023. The results of the review articles showed the therapeutic influence of PPARs on a wide range of cancer on in vitro, in vivo and clinical studies. However, further experimental and clinical studies are needed to be conducted on the influence of PPARs on various cancers.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Alikhani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Chen M, Wang H, Cui Q, Shi J, Hou Y. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 2024; 41:114. [PMID: 38619661 DOI: 10.1007/s12032-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
As one of the peroxisome-proliferator-activated receptors (PPARs) members, PPARγ is a ligand binding and activated nuclear hormone receptor, which is an important regulator in metabolism, proliferation, tumor progression, and immune response. Increased evidence suggests that activation of PPARγ in response to ligands inhibits multiple types of cancer proliferation, metastasis, and tumor growth and induces cell apoptosis including breast cancer, colon cancer, lung cancer, and bladder cancer. Conversely, some reports suggest that activation of PPARγ is associated with tumor growth. In addition to regulating tumor progression, PPARγ could promote or inhibit tumor immunotherapy by affecting macrophage differentiation or T cell activity. These controversial findings may be derived from cancer cell types, conditions, and ligands, since some ligands are independent of PPARγ activity. Therefore, this review discussed the dual role of PPARγ on tumor progression and immunotherapy.
Collapse
Affiliation(s)
- Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Huijie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Qian Cui
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Psilopatis I, Vrettou K, Troungos C, Theocharis S. The Role of Peroxisome Proliferator-Activated Receptors in Endometrial Cancer. Int J Mol Sci 2023; 24:ijms24119190. [PMID: 37298140 DOI: 10.3390/ijms24119190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Endometrial carcinoma is the most common malignant tumor of the female genital tract in the United States. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins which regulate gene expression. In order to investigate the role of PPARs in endometrial cancer, we conducted a literature review using the MEDLINE and LIVIVO databases and were able to identify 27 relevant studies published between 2000 and 2023. The PPARα and PPARβ/δ isoforms seemed to be upregulated, whereas PPARγ levels were reported to be significantly lower in endometrial cancer cells. Interestingly, PPAR agonists were found to represent potent anti-cancer therapeutic alternatives. In conclusion, PPARs seem to play a significant role in endometrial cancer.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Constantinos Troungos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 16, Goudi, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
4
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
5
|
Kim J, Choe J. A paracrine effect of 15 (S)-hydroxyeicosatetraenoic acid revealed in prostaglandin production by human follicular dendritic cell-like cells. Prostaglandins Other Lipid Mediat 2020; 151:106487. [PMID: 33007445 DOI: 10.1016/j.prostaglandins.2020.106487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
Lipid mediators play active roles in each stage of inflammation under physiological and pathologic conditions. We have investigated the cellular source and functions of several prostanoids in the immune inflammatory responses using follicular dendritic cell (FDC)-like cells. In this study, we report a novel finding on the role of 15(S)- hydroxyeicosatetraenoic acid (HETE). Our observation of 15(S)-HETE uptake by FDC-like cells prompted to hypothesize that 15(S)-HETE might have a regulatory role in the other branch of eicosanoid production. The effects of 15(S)-HETE on COX-2 expression and prostaglandin (PG) production were analyzed by immunoblotting and specific enzyme immunoassays. The addition of 15(S)-HETE resulted in elevated levels of COX-2 expression and PG production. The enhanced PG production was not due to growth stimulation of FDC-like cells since 15(S)-HETE did not modulate FDC-like cell proliferation by the culture period of PG measurement. Peroxisome proliferator-activated receptor gamma (PPARγ) seems to mediate the augmenting activity as the antagonist GW9662 dose- dependently prevented 15(S)-HETE from increasing PG production. In addition, PPARγ protein expression was readily detected in FDC-like cells. These effects of 15(S)-HETE were displayed in the combined addition with IL-1β. Based on these results, we suggest that 15(S)-HETE is an inflammatory costimulator of FDC acting in a paracrine fashion.
Collapse
Affiliation(s)
- Jini Kim
- Institute of Life Sciences, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea.
| |
Collapse
|
6
|
Kidney Injury Molecule-1 Is Upregulated in Renal Lipotoxicity and Mediates Palmitate-Induced Tubular Cell Injury and Inflammatory Response. Int J Mol Sci 2019; 20:ijms20143406. [PMID: 31373312 PMCID: PMC6679556 DOI: 10.3390/ijms20143406] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy is increasingly recognized as a major contributor to kidney failure in patients with obesity and type 2 diabetes. This study was designed to identify the molecular mediators of kidney injury associated with metabolic syndrome with or without hyperglycemia. We compared renal gene expression profiles in Zucker lean (ZL), Zucker obese (ZO), and Zucker diabetic (ZD) rats using cDNA microarray with quantitative verification of selected transcripts by real-time PCR. Compared to the 20-week-old ZL control (glucose: 110 ± 8 mg/dL), both prediabetic ZO (glucose: 157 ± 11 mg/dL) and diabetic ZD (glucose: 481 ± 37 mg/dL) rats displayed hyperlipidemia and kidney injury with a high degree of proteinuria. cDNA microarray identified 25 inflammation and injury-related transcriptomes whose expression levels were similarly increased in ZO and ZD kidneys. Among them, kidney injury molecule-1 (KIM-1) was found to be the most highly upregulated in both ZO and ZD kidneys. Immunofluorescence staining of kidney sections revealed a strong correlation between lipid overload and KIM-1 upregulation in proximal tubules of ZO and ZD rats. In cultured primary renal tubular epithelial cells (TECs), administration of saturated fatty acid palmitate resulted in an upregulation of KIM-1, osteopontin, and CD44, which was greatly attenuated by U0126, an inhibitor of extracellular signal-regulated kinase (ERK)1/2. Moreover, knockdown of KIM-1 by siRNA interference inhibited palmitate-induced cleaved caspase-3, osteopontin, and CD44 proteins in primary TECs. Our results indicate that KIM-1 expression is upregulated in renal lipotoxicity and may play an important role in fatty acid-induced inflammation and tubular cell damage in obesity and diabetic kidney disease.
Collapse
|
7
|
Do arachidonic acid metabolites affect apoptosis in bovine endometrial cells with silenced PPAR genes? Prostaglandins Other Lipid Mediat 2019; 143:106336. [PMID: 31112752 DOI: 10.1016/j.prostaglandins.2019.106336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are expressed in bovine uterus, and their agonists are arachidonic acid (AA) metabolites. We hypothesised that silencing of PPAR genes in bovine endometrial stromal cells (ESC) would change the intracellular signalling through PPAR and affect apoptosis after cell treatment with different AA metabolites. The study's aims are detection of apoptosis and examining the influence of prostaglandins and leukotrienes on apoptosis occurring in physiological ESC and cells with silenced PPAR (α, δ, and γ) genes. Silencing the PPARα and PPARδ genes in cells resulted in increased DNA fragmentation and mRNA and protein expression of caspase (CASP) -3 and -8 (P < 0.05). Neither DNA fragmentation nor the mRNA and protein expression of CASP3 and -8 in cells with silenced PPARγ gene were changed compared to physiological cells (P > 0.05). Among PPARs, PPARα and PPARδ appear to inhibit apoptosis, and AA metabolites, as PPAR agonists, modify this process in bovine ESC.
Collapse
|
8
|
To KKW, Wu WKK, Loong HHF. PPARgamma agonists sensitize PTEN-deficient resistant lung cancer cells to EGFR tyrosine kinase inhibitors by inducing autophagy. Eur J Pharmacol 2018; 823:19-26. [PMID: 29378193 DOI: 10.1016/j.ejphar.2018.01.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/25/2023]
Abstract
We aimed to develop novel drug combination strategy to overcome drug resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) in the treatment of non-small cell lung cancer (NSCLC). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor, which upon activation upregulates phosphatase and tensin homolog (PTEN) to inhibit cell signaling downstream of PI3K to mediate apoptosis. To this end, PTEN loss is a known mechanism contributing to resistance to EGFR TKIs. Therefore, PPARγ agonists are hypothesized to overcome EGFR TKI resistance. Using human NSCLC cell models with PTEN deficiency, the potentiation of EGFR TKI anticancer activity by PPARγ agonists was evaluated. PPARγ agonists were found to upregulate PTEN, subsequently inhibiting the PI3K-Akt signaling pathway, and thus enhancing the anticancer activity of gefitinib (a first generation EGFR TKI). Chemical and genetic inhibition of PPARγ were shown to prevent this potentiation of anticancer activity by PPARγ agonists, thus confirming the crucial role played by PPARγ activation. Interestingly, the tested PPARγ agonists were also found to induce autophagy, as evidenced by the increased expression of an autophagy marker LC3-II and the autophagic degradation of p62/SQSTM1. PPARγ agonists-induced autophagic cell death was believed to contribute to the circumvention of resistance in PTEN-deficient cells because the genetic silencing of ATG5 (an autophagy mediator) was found to eliminate the drug potentiation effect by the PPARγ agonists. Our findings thus provide the basis for the rational and personalized use of PPARγ agonists in combination with EGFR TKIs in lung cancer patients.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Room 801N, Area 39, Shatin, New Territories, Hong Kong, China.
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Herbert H F Loong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Fujita M, Hasegawa A, Yamamori M, Okamura N. In vitro and in vivo cytotoxicity of troglitazone in pancreatic cancer. J Exp Clin Cancer Res 2017; 36:91. [PMID: 28673319 PMCID: PMC5496133 DOI: 10.1186/s13046-017-0557-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/18/2017] [Indexed: 11/21/2022] Open
Abstract
Background Troglitazone (TGZ) is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist that has been investigated as a potential chemopreventive and chemotherapeutic agent. However, the antitumor efficacy and mechanisms of TGZ in pancreatic cancer have not been extensively investigated. This study was performed to investigate the in vitro and in vivo effects of TGZ against pancreatic cancer cell lines, as well as its action mechanisms in terms of PPARγ dependency and the Akt and mitogen-activated protein kinase (MAPK) pathways. We also evaluated the effects of TGZ on cell invasion and migration. Methods MIA Paca2 and PANC-1 human pancreatic cancer cell lines were used. Cell viability and caspase-3 activity were detected using fluorescent reagents, and chromatin condensation was observed after staining the cells with Hoechst 33342. Protein expression levels were detected by western blot analysis. Invasion and migration assays were performed using 24-well chambers. The in vivo antitumor effects of TGZ were investigated in nude mice inoculated with MIA Paca2 cells. Mice were orally administered TGZ (200 mg/kg) every day for 5 weeks, and tumor volumes were measured bi-dimensionally. Results TGZ showed dose-dependent cytotoxicity against both cell lines, which was not attenuated by a PPARγ inhibitor. Further, TGZ induced chromatin condensation, elevated caspase-3 activity, and increased Bax/Bcl-2 relative expression in MIA Paca2 cells. TGZ also increased phosphorylation of Akt and MAPK (ERK/p38/JNK) in both cell lines, and a JNK inhibitor significantly increased the viability of MIA Paca2 cells. TGZ moderately inhibited cell migration. Tumor growth in the MIA Paca2 xenograft model was inhibited by TGZ administration, while mouse body weights in the treated group were not different from those of the vehicle administration group. Conclusion We demonstrated for the first time the in vivo antitumor effects of TGZ in pancreatic cancer without marked adverse effects. TGZ induced mitochondria-mediated apoptosis in MIA Paca2 cells, and its cytotoxic effects were PPARγ-independent and occurred via the JNK pathway. Our results indicate that TGZ is a potential approach for the treatment of pancreatic cancer and warrants further studies regarding its detailed mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Megumi Fujita
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien-kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Ai Hasegawa
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien-kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Motohiro Yamamori
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien-kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Noboru Okamura
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien-kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan.
| |
Collapse
|
10
|
Roy Chowdhury U, Bahler CK, Holman BH, Fautsch MP. ATP-sensitive potassium (KATP) channel openers diazoxide and nicorandil lower intraocular pressure by activating the Erk1/2 signaling pathway. PLoS One 2017; 12:e0179345. [PMID: 28594895 PMCID: PMC5464668 DOI: 10.1371/journal.pone.0179345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/26/2017] [Indexed: 01/17/2023] Open
Abstract
Elevated intraocular pressure is the most prevalent and only treatable risk factor for glaucoma, a degenerative disease of the optic nerve. While treatment options to slow disease progression are available, all current therapeutic and surgical treatments have unwanted side effects or limited efficacy, resulting in the need to identify new options. Previous reports from our laboratory have established a novel ocular hypotensive effect of ATP-sensitive potassium channel (KATP) openers including diazoxide (DZ) and nicorandil (NCD). In the current study, we evaluated the role of Erk1/2 signaling pathway in KATP channel opener mediated reduction of intraocular pressure (IOP). Western blot analysis of DZ and NCD treated primary normal trabecular meshwork (NTM) cells, human TM (isolated from perfusion cultures of human anterior segments) and mouse eyes showed increased phosphorylation of Erk1/2 when compared to vehicle treated controls. DZ and NCD mediated pressure reduction (p<0.02) in human anterior segments (n = 7 for DZ, n = 4 for NCD) was abrogated by U0126 (DZ + U0126: -9.7 ± 11.5%, p = 0.11; NCD + U0126: -0.1 ± 11.5%, p = 1.0). In contrast, U0126 had no effect on latanoprostfree acid-induced pressure reduction (-52.5 ± 6.8%, n = 4, p = 0.001). In mice, DZ and NCD reduced IOP (DZ, 14.9 ± 3.8%, NCD, 16.9 ± 2.5%, n = 10, p<0.001), but the pressure reduction was inhibited by U0126 (DZ + U0126, 0.7 ± 3.0%; NCD + U0126, 0.9 ± 2.2%, n = 10, p>0.1). Histologic evaluation of transmission electron micrographs from DZ + U0126 and NCD + U0126 treated eyes revealed no observable morphological changes in the ultrastructure of the conventional outflow pathway. Taken together, the results indicate that the Erk1/2 pathway is necessary for IOP reduction by KATP channel openers DZ and NCD.
Collapse
Affiliation(s)
- Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cindy K. Bahler
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bradley H. Holman
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael P. Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|