1
|
Siverino C, Freitag L, Arens D, Styger U, Richards RG, Moriarty TF, Stadelmann VA, Thompson K. Titanium Wear Particles Exacerbate S. epidermidis-Induced Implant-Related Osteolysis and Decrease Efficacy of Antibiotic Therapy. Microorganisms 2021; 9:microorganisms9091945. [PMID: 34576840 PMCID: PMC8468325 DOI: 10.3390/microorganisms9091945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Total joint arthroplasty (TJA) surgeries are common orthopedic procedures, but bacterial infection remains a concern. The aim of this study was to assess interactions between wear particles (WPs) and immune cells in vitro and to investigate if WPs affect the severity, or response to antibiotic therapy, of a Staphylococcus epidermidis orthopedic device-related infection (ODRI) in a rodent model. Biofilms grown on WPs were challenged with rifampin and cefazolin (100 µg/mL) to determine antibiotic efficacy. Neutrophils or peripheral blood mononuclear cells (PBMCs) were incubated with or without S. epidermidis and WPs, and myeloperoxidase (MPO) and cytokine release were analyzed, respectively. In the ODRI rodent model, rats (n = 36) had a sterile or S. epidermidis-inoculated screw implanted in the presence or absence of WPs, and a subgroup was treated with antibiotics. Bone changes were monitored using microCT scanning. The presence of WPs decreased antibiotic efficacy against biofilm-resident bacteria and promoted MPO and pro-inflammatory cytokine production in vitro. WPs exacerbated osteolytic responses to S. epidermidis infection and markedly reduced antibiotic efficacy in vivo. Overall, this work shows that the presence of titanium WPs reduces antibiotic efficacy in vitro and in vivo, induces proinflammatory cytokine release, and exacerbates S. epidermidis-induced osteolysis.
Collapse
Affiliation(s)
- Claudia Siverino
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - Linda Freitag
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - Daniel Arens
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - Ursula Styger
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - R. Geoff Richards
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - T. Fintan Moriarty
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - Vincent A. Stadelmann
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
- Department of Teaching, Research and Development, Schulthess Clinic, 8008 Zürich, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
- Correspondence: ; Tel.: +41-81-414-2325
| |
Collapse
|
2
|
Zhao Z, Wang C, Xu Y, Wang X, Jia B, Yu T, Wang Y, Zhang Y. Effects of the Local Bone Renin-Angiotensin System on Titanium-Particle-Induced Periprosthetic Osteolysis. Front Pharmacol 2021; 12:684375. [PMID: 34248634 PMCID: PMC8264785 DOI: 10.3389/fphar.2021.684375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Wear particles may induce osteoclast formation and osteoblast inhibition that lead to periprosthetic osteolysis (PPOL) and subsequent aseptic loosening, which is the primary reason for total joint arthroplasty failure. Local bone renin-angiotensin system (RAS) has been found to participate in the pathogenic process of various bone-related diseases via promoting bone resorption and inhibiting bone formation. However, it remains unclear whether and how local bone RAS participates in wear-particle-induced PPOL. In this study, we investigated the potential role of RAS in titanium (Ti) particle-induced osteolysis in vivo and osteoclast and osteoblast differentiation in vitro. We found that the expressions of AT1R, AT2R and ACE in the interface membrane from patients with PPOL and in calvarial tissues from a murine model of Ti-particle-induced osteolysis were up-regulated, but the increase of ACE in the calvarial tissues was abrogated by perindopril. Moreover, perindopril mitigated the Ti-particle-induced osteolysis in the murine model by suppressing bone resorption and increasing bone formation. We also observed in RAW264.7 macrophages that Ang II promoted but perindopril suppressed Ti-particle-induced osteoclastogenesis, osteoclast-mediated bone resorption and expression of osteoclast-related genes. Meanwhile, Ang II enhanced but perindopril repressed Ti-particle-induced suppression of osteogenic differentiation and expression of osteoblast-specific genes in mouse bone marrow mesenchymal stem cells (BMSCs). In addition, local bone RAS promoted Ti-particle-induced osteolysis by increasing bone resorption and decreasing bone formation through modulating the RANKL/RANK and Wnt/β-catenin pathways. Taken together, we suggest that inhibition of RAS may be a potential approach to the treatment of wear-particle-induced PPOL.
Collapse
Affiliation(s)
- Zhiping Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Medical Department of Qingdao University, Qingdao, China
| | - Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxing Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Medical Department of Qingdao University, Qingdao, China
| | - Xiangyu Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Medical Department of Qingdao University, Qingdao, China
| | - Bin Jia
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Medical Department of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingzhen Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Xu Z, Fan F, Chen H, Shi P, Zhu D, Yang M, Wang Z, Ei-Seedi HR, Du M. Absorption and transport of a Mytilus edulis-derived peptide with the function of preventing osteoporosis. Food Funct 2021; 12:2102-2111. [PMID: 33564802 DOI: 10.1039/d0fo02353a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The YPRKDETGAERT peptide (PME-1) identified from the Mytilus edulis proteins has been shown to promote the proliferation and differentiation of osteoblasts and it has good bone-forming activity in vitro. Further, PME-1 has been shown to prevent osteoporosis in vivo. PME-1 can be absorbed through the gastrointestinal tract, and the passing rate in monolayer Caco-2 cells was 6.57%. PME-1 can also enter the blood circulation and the concentration of PME-1 in serum reached the maximum, 61.06 ± 26.32 ng mL-1, 20 min after feeding. The multifunctional in vivo imager was used to further determine the distribution of the 5-FITC-(Acp)-YPRKDETGAERT peptide (PME-1-FITC) 2 h after feeding the peptide, and the result confirmed the above results and showed that a part of PME-1-FITC can affect bone in vivo. Therefore, PME-1 not only was easily absorbed in the gastrointestinal tract, but also has the potential beneficial effect on preventing osteoporosis.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China. and College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pujie Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Dongyang Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75123, Sweden
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
5-Aza-2-deoxycytidine inhibits osteolysis induced by titanium particles by regulating RANKL/OPG ratio. Biochem Biophys Res Commun 2020; 529:629-634. [PMID: 32736684 DOI: 10.1016/j.bbrc.2020.05.192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
Abstract
Periprosthetic osteolysis (PIO) caused by wear particles is the main cause of implant failure, which is regulated by nuclear factor κ B receptor activator ligand (RANKL)/osteoprotegerin (OPG) system. At present, there is a lack of effective drugs to prevent or treat PIO. Previous studies have confirmed that DNA methylation is closely related to postmenopausal osteoporosis and can affect the expression of OPG and RANKL. However, the relationship between DNA methylation and PIO is not clear. In this study, we investigated the inhibitory effect of 5-Aza-2-deoxycytidine (AzadC) on osteolysis induced by titanium particles in a mouse model. This inhibition mechanism is achieved by changing the ratio of RANKL/OPG in the osteolysis model. In conclusion, there is a relationship between DNA methylation and PIO. AzadC has a certain inhibitory effect on osteolysis induced by titanium particles. Regulating DNA methylation may be a new way to treat PIO. Our findings lay a foundation for epigenetic understanding and intervention of osteolysis.
Collapse
|
5
|
The Recombinant Protein EphB4-Fc Changes the Ti Particle-Mediated Imbalance of OPG/RANKL via EphrinB2/EphB4 Signaling Pathway and Inhibits the Release of Proinflammatory Factors In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1404915. [PMID: 32587656 PMCID: PMC7294355 DOI: 10.1155/2020/1404915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Aseptic loosening caused by wear particles is one of the common complications after total hip arthroplasty. We investigated the effect of the recombinant protein ephB4-Fc (erythropoietin-producing human hepatocellular receptor 4) on wear particle-mediated inflammatory response. In vitro, ephrinB2 expression was analyzed using siRNA-NFATc1 (nuclear factor of activated T-cells 1) and siRNA-c-Fos. Additionally, we used Tartrate-resistant acid phosphatase (TRAP) staining, bone pit resorption, Enzyme-linked immunosorbent assay (ELISA), as well as ephrinB2 overexpression and knockdown experiments to verify the effect of ephB4-Fc on osteoclast differentiation and function. In vivo, a mouse skull model was constructed to test whether the ephB4-Fc inhibits osteolysis and inhibits inflammation by micro-CT, H&E staining, immunohistochemistry, and immunofluorescence. The gene expression of ephrinB2 was regulated by c-Fos/NFATc1. Titanium wear particles activated this signaling pathway to the promoted expression of the ephrinB2 gene. However, ephrinB2 protein can be activated by osteoblast membrane receptor ephB4 to inhibit osteoclast differentiation. In in vivo experiments, we found that ephB4 could regulate Ti particle-mediated imbalance of OPG/RANKL, and the most important finding was that ephB4 relieved the release of proinflammatory factors. The ephB4-Fc inhibits wear particle-mediated osteolysis and inflammatory response through the ephrinB2/EphB4 bidirectional signaling pathway, and ephrinB2 ligand is expected to become a new clinical drug therapeutic target.
Collapse
|
6
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|
7
|
Xu Z, Chen H, Fan F, Shi P, Tu M, Cheng S, Wang Z, Du M. Bone formation activity of an osteogenic dodecapeptide from blue mussels (Mytilus edulis). Food Funct 2019; 10:5616-5625. [PMID: 31432856 DOI: 10.1039/c9fo01201j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel osteogenic dodecapeptide peptide (PIE), IEELEEELEAER, was purified from the protein hydrolysate of blue mussels (Mytilus edulis). PIE was identified using a capillary electrophoresis electrospray ionization-quadrupole-time of flight mass spectrometer. PIE showed a good reduction in the bone loss in ovariectomized mice, and it also increased the bone mineral density of the ovariectomized mice. PIE has a high affinity with integrins (PDB: , ). There are 8 and 12 amino acid residues from PIE that interact with integrins and , respectively. PIE accelerates the transformation of G0/G1 phase cells into G2 M phase cells, which promotes the growth of osteoblasts. PIE (100 μg mL-1) can enhance alkaline phosphatase (ALP) activity by 26.48% compared with the control, and it also inhibits the growth of osteoclasts and tartrate resistant acid phosphatase (TRAP) activity. Therefore, PIE may contribute to preventing osteoporosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Fengjiao Fan
- Department of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Pujie Shi
- Department of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Xu Z, Zhao F, Chen H, Xu S, Fan F, Shi P, Tu M, Wang Z, Du M. Nutritional properties and osteogenic activity of enzymatic hydrolysates of proteins from the blue mussel (Mytilus edulis). Food Funct 2019; 10:7745-7754. [DOI: 10.1039/c9fo01656b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seafood provides a range of health benefits due to its nutritional and bioactive components. The proteins and peptides from Mytilus edulis have good bone growth promoting activities.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Fujunzhu Zhao
- Food Science Department
- College of Agriculture Science
- Pennsylvania State University, Commonwealth of Pennsylvania
- PA 16802
- United States
| | - Hui Chen
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Shiqi Xu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Fengjiao Fan
- College of Food Science and Engineering
- Nanjing University of Finance and Economics
- Nanjing
- China
| | - Pujie Shi
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Maolin Tu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Ziye Wang
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Ming Du
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| |
Collapse
|
9
|
Gao X, Ge J, Li W, Zhou W, Xu L. LncRNA KCNQ1OT1 promotes osteogenic differentiation to relieve osteolysis via Wnt/β-catenin activation. Cell Biosci 2018. [PMID: 29541443 PMCID: PMC5842584 DOI: 10.1186/s13578-018-0216-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Resveratrol (RSV) has been reported to stimulate osteoblast differentiation in which Wnt/β-catenin signaling pathway played a crucial role. However, whether and how RSV activated Wnt/β-catenin pathway in osteogenic differentiation still remained elusive. Methods In vivo polymethylmethacrylate (PMMA) particle-induced osteolysis (PIO) mouse model and in vitro PMMA particle-stimulated mouse mesenchymal stem cells (mMSCs) experiments were established. Relative expression levels of lncRNA KCNQ1OT1, β-catenin, Runx2, Osterix and osteocalcin were determined using quantitative Real-Time PCR. Western blotting was used to measure β-catenin protein expression. In addition, the alkaline phosphatase activity and mineral deposition level using alizarin red S staining were performed to examine osteogenic differentiation status. The interaction between KCNQ1OT1 and β-catenin was confirmed by RNA pull down assay. Results RSV significantly attenuated PIO in vivo and PMMA-particle inhibition of osteogenic differentiation of mMSCs. Moreover, KCNQ1OT1 exerted the similar function in mMSCs by regulating β-catenin. Further study demonstrated that RSV exerted its effect on osteoblastic differentiation by regulating KCNQ1OT1. Consequently, RSV alleviated PMMA-particle inhibition of osteoblastic differentiation via Wnt/β-catenin pathway activation in vivo and in vitro. Conclusion RSV accelerated osteoblast differentiation by regulating lncRNA KCNQ1OT1 via Wnt/β-catenin pathway activation, indicating the functional role of RSV in modulating osteogenesis.
Collapse
Affiliation(s)
- Xuren Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| | - Jian Ge
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| | - Weiyi Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| | - Wangchen Zhou
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| | - Lei Xu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Rd., Xuzhou, 221002 Jiangsu People's Republic of China
| |
Collapse
|