1
|
Baptista FI, Ambrósio AF. Tracing the influence of prenatal risk factors on the offspring retina: Focus on development and putative long-term consequences. Eur J Clin Invest 2024; 54:e14266. [PMID: 38864773 DOI: 10.1111/eci.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Pregnancy represents a window of vulnerability to fetal development. Disruptions in the prenatal environment during this crucial period can increase the risk of the offspring developing diseases over the course of their lifetime. The central nervous system (CNS) has been shown to be particularly susceptible to changes during crucial developmental windows. To date, research focused on disruptions in the development of the CNS has predominantly centred on the brain, revealing a correlation between exposure to prenatal risk factors and the onset of neuropsychiatric disorders. Nevertheless, some studies indicate that the retina, which is part of the CNS, is also vulnerable to in utero alterations during pregnancy. Such changes may affect neuronal, glial and vascular components of the retina, compromising retinal structure and function and possibly impairing visual function. METHODS A search in the PubMed database was performed, and any literature concerning prenatal risk factors (drugs, diabetes, unbalanced diet, infection, glucocorticoids) affecting the offspring retina were included. RESULTS This review collects evidence on the cellular, structural and functional changes occurring in the retina triggered by maternal risk factors during pregnancy. We highlight the adverse impact on retinal development and its long-lasting effects, providing a critical analysis of the current knowledge while underlining areas for future research. CONCLUSIONS Appropriate recognition of the prenatal risk factors that negatively impact the developing retina may provide critical clues for the design of preventive strategies and for early therapeutic intervention that could change retinal pathology in the progeny.
Collapse
Affiliation(s)
- Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| |
Collapse
|
2
|
Bird IM, Cavener V, Surendran Nair M, Nissly RH, Chothe SK, Jacob J, Kuchipudi SV. Distinct Replication Kinetics, Cytopathogenicity, and Immune Gene Regulation in Human Microglia Cells Infected with Asian and African Lineages of Zika Virus. Microorganisms 2024; 12:1840. [PMID: 39338514 PMCID: PMC11433722 DOI: 10.3390/microorganisms12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is a significant global health concern due to its association with neurodevelopmental disorders such as congenital Zika syndrome (CZS). This study aimed to compare the replication kinetics, viral persistence, cytopathogenic effects, and immune gene expression in human microglia cells (CHME-3) infected with an Asian lineage ZIKV (PRVABC59, referred to as ZIKV-PRV) and an African lineage ZIKV (IBH30656, referred to as ZIKV-IBH). We found that ZIKV-PRV replicated more efficiently and persisted longer while inducing lower levels of cell death and inflammatory gene activation compared with ZIKV-IBH. These findings suggest that the enhanced replication and persistence of ZIKV-PRV, along with its ability to evade innate immune responses, may underlie its increased neuropathogenic potential, especially in the context of CZS. In contrast, ZIKV-IBH, with its stronger immune gene activation and higher cytopathogenicity, may lead to more acute infections with faster viral clearance, thereby reducing the likelihood of chronic central nervous system (CNS) infection. This study provides crucial insights into the molecular and cellular mechanisms driving the differential pathogenicity of ZIKV lineages and highlights the need for further research to pinpoint the viral factors responsible for these distinct clinical outcomes.
Collapse
Affiliation(s)
- Ian M. Bird
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Victoria Cavener
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Meera Surendran Nair
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (I.M.B.); (V.C.); (M.S.N.); (R.H.N.)
| | - Shubhada K. Chothe
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA 30329, USA;
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| |
Collapse
|
3
|
Garcia G, Chakravarty N, Paiola S, Urena E, Gyani P, Tse C, French SW, Danielpour M, Breunig JJ, Nathanson DA, Arumugaswami V. Differential Susceptibility of Ex Vivo Primary Glioblastoma Tumors to Oncolytic Effect of Modified Zika Virus. Cells 2023; 12:2384. [PMID: 37830597 PMCID: PMC10572118 DOI: 10.3390/cells12192384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time. Zika virus (ZIKV) has demonstrated oncotropism and oncolytic effects on GBM stem cells (GSCs). To address the need for safe and effective GBM treatments, we designed an attenuated ZIKV strain (ZOL-1) that does not cause paralytic or neurological diseases in mouse models compared with unmodified ZIKV. Importantly, we found that patient-derived GBM tumors exhibited susceptibility (responders) and non-susceptibility (non-responders) to ZOL-1-mediated tumor cell killing, as evidenced by differential apoptotic cell death and cell viability upon ZOL-1 treatment. The oncolytic effect observed in responder cells was seen both in vitro in neurosphere models and in vivo upon xenograft. Finally, we observed that the use of ZOL-1 as combination therapy with multiple PI3K-AKT inhibitors in non-responder GBM resulted in enhanced chemotherapeutic efficacy. Altogether, this study establishes ZOL-1 as a safe and effective treatment against GBM and provides a foundation to conduct further studies evaluating its potential as an effective adjuvant with other chemotherapies and kinase inhibitors.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Sophia Paiola
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Estrella Urena
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Priya Gyani
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.D.); (J.J.B.)
| | - Joshua J. Breunig
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.D.); (J.J.B.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat Commun 2021; 12:2766. [PMID: 33986255 PMCID: PMC8119459 DOI: 10.1038/s41467-021-22966-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.
Collapse
|
5
|
Birth Defects and Long-Term Neurodevelopmental Abnormalities in Infants Born During the Zika Virus Epidemic in the Dominican Republic. Ann Glob Health 2021; 87:4. [PMID: 33505863 PMCID: PMC7792457 DOI: 10.5334/aogh.3095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: When acquired during pregnancy, Zika virus (ZIKV) infection can cause substantial fetal morbidity, however, little is known about the long-term neurodevelopmental abnormalities of infants with congenital ZIKV exposure without microcephaly at birth. Methods: We conducted a cross sectional study to characterize infants born with microcephaly, and a retrospective cohort study of infants who appeared well at birth, but had possible congenital ZIKV exposure. We analyzed data from the Dominican Ministry of Health’s (MoH) National System of Epidemiological Surveillance. Neurodevelopmental abnormalities were assessed by pediatric neurologists over an 18-month period using Denver Developmental Screening Test II. Results: Of 800 known live births from 1,364 women with suspected or confirmed ZIKV infection during pregnancy, 87 (11%) infants had confirmed microcephaly. Mean head circumference (HC) at birth was 28.1 cm (SD ± 2.1 cm) and 41% had a HC on the zero percentile for gestational age. Of 42 infants with possible congenital ZIKV exposure followed longitudinally, 52% had neurodevelopmental abnormalities, including two cases of postnatal onset microcephaly, during follow-up. Most abnormalities resolved, though two infants (4%) had neurodevelopmental abnormalities that were likely associated with ZIKV infection and persisted through 15–18 months. Conclusions: In the DR epidemic, 11% of infants born to women reported to the MoH with suspected or confirmed ZIKV during pregnancy had microcephaly. Some 4% of ZKV-exposed infants developed postnatal neurocognitive abnormalities. Monitoring of the cohort through late childhood and adolescence is needed.
Collapse
|
6
|
Mohite D, Omole JA, Bhatti KS, Kaleru T, Khan S. The Association of Anti-Ganglioside Antibodies in the Pathogenesis and Development of Zika-Associated Guillain-Barré Syndrome. Cureus 2020; 12:e8983. [PMID: 32775065 PMCID: PMC7402431 DOI: 10.7759/cureus.8983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) has created major outbreaks all over the Americas and has caused severe neurological complications. The main neurological complications linked to ZIKV are Guillain-Barré syndrome (GBS), encephalitis, myelitis, and microcephaly. We thoroughly searched for published literature on PubMed and found evidence supporting the relationship between ZIKV and GBS. Through April 1, 2020, 429 publications were available on PubMed using the words “Zika associated GBS.” Among these, only four results linked anti-ganglioside antibodies to Zika-associated GBS. So, we expanded our search to other platforms like PubMed Central® (PMC), Google Scholar, and Cochrane, after which we shortlisted 28 studies. These studies include review articles, observational studies, case series, and case reports. The information collected from these articles were mainly based on the outbreaks in Latin America and the results that these patients showed in the course of the disease. It took a lag time of 7-10 days for the patients to develop Zika-associated GBS. We used all the evidence regarding the epidemiology, clinical manifestations, neurological complications, and diagnostic criteria that supported the findings of anti-ganglioside antibodies to ZIKV-associated GBS. Patients were detected with the presence of these antibodies in their urine through the enzyme-linked immunosorbent assay (ELISA) test. But the mechanism by which the ZIKV causes other complications like myelitis and encephalitis is still unknown and yet to be explored to develop treatment and management strategies.
Collapse
Affiliation(s)
- Divya Mohite
- Neurology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Janet A Omole
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Karandeep S Bhatti
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Thanmai Kaleru
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
7
|
Souza GAPD, Salvador EA, de Oliveira FR, Cotta Malaquias LC, Abrahão JS, Leomil Coelho LF. An in silico integrative protocol for identifying key genes and pathways useful to understand emerging virus disease pathogenesis. Virus Res 2020; 284:197986. [PMID: 32339536 DOI: 10.1016/j.virusres.2020.197986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
The pathogenesis of an emerging virus disease is a difficult task due to lack of scientific data about the emerging virus during outbreak threats. Several biological aspects should be studied faster, such as virus replication and dissemination, immune responses to this emerging virus on susceptible host and specially the virus pathogenesis. Integrative in silico transcriptome analysis is a promising approach for understanding biological events in complex diseases. In this study, we propose an in silico protocol for identifying key genes and pathways useful to understand emerging virus disease pathogenesis. To validate our protocol, the emerging arbovirus Zika virus (ZIKV) was chosen as a target micro-organism. First, an integrative transcriptome data from neural cells infected with ZIKV was used to identify shared differentially expressed genes (DEGs). The DEGs were used to identify the potential candidate genes and pathways in ZIKV pathogenesis through gene enrichment analysis and protein‑protein interaction network construction. Thirty DEGs (24 upregulated and 6 downregulated) were identified in all ZIKV-infected cells, primarily associated with endoplasmic reticulum stress and DNA replication pathways. Some of these genes and pathways had biological functions linked to neurogenesis and/or apoptosis, confirming the potential of this protocol to find key genes and pathways involved on disease pathogenesis. Moreover, the proposed in silico protocol performed anintegrated analysis that is able to predict and identify putative biomarkers from different transcriptome data. These biomarkers could be useful to understand virus disease pathogenesis and also help the identification of candidate antiviral drugs.
Collapse
Affiliation(s)
- Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ezequiel Aparecido Salvador
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Fernanda Roza de Oliveira
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Jonatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Bhushan G, Lim L, Bird I, Chothe SK, Nissly RH, Kuchipudi SV. Iminosugars With Endoplasmic Reticulum α-Glucosidase Inhibitor Activity Inhibit ZIKV Replication and Reverse Cytopathogenicity in vitro. Front Microbiol 2020; 11:531. [PMID: 32373079 PMCID: PMC7179685 DOI: 10.3389/fmicb.2020.00531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/12/2020] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV), a vector-borne virus of the family Flaviviridae, continues to spread and remains a significant global public health threat. Currently, there are no approved vaccines or antivirals against ZIKV. We investigated the anti-ZIKV ability of three iminosugars with endoplasmic reticulum α-glucosidase inhibitor (ER-AGI) activity, namely deoxynojirimycin (DNJ), castanospermine, and celgosivir. None of the three iminosugars showed any significant cytotoxicity in Vero or human microglia CHME3 cells when applied for 72 h at concentrations up to 100 μM. Iminosugar treatment of Vero or CHME3 cells prior to ZIKV infection resulted in significant inhibition of ZIKV replication over 48 h. Reduction in ZIKV replication in iminosugar-treated cells was not associated with any significant change in the expression levels of key antiviral genes. Following infection with three different strains of ZIKV, iminosugar-treated Vero or CHME3 cells showed no cell death, whereas vehicle-treated control cells exhibited 50–60% cell death at 72 h post-infection (hpi). While there was no significant difference in apoptosis between iminosugar-treated and control cells, iminosugar-treated cells exhibited a substantial reduction of necrosis at 72 hpi following ZIKV infection. In summary, iminosugars with ER-AGI activity inhibit ZIKV replication and significantly reduce necrosis without altering the antiviral gene expression and apoptosis of infected human cells. The results of this study strongly suggest that iminosugars are promising anti-ZIKV antiviral agents and such warrant further in vivo studies.
Collapse
Affiliation(s)
- Gitanjali Bhushan
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Levina Lim
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ian Bird
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
9
|
Villagomez AN, Muñoz FM, Peterson RL, Colbert AM, Gladstone M, MacDonald B, Wilson R, Fairlie L, Gerner GJ, Patterson J, Boghossian NS, Burton VJ, Cortés M, Katikaneni LD, Larson JCG, Angulo AS, Joshi J, Nesin M, Padula MA, Kochhar S, Connery AK. Neurodevelopmental delay: Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2019; 37:7623-7641. [PMID: 31783983 PMCID: PMC6899448 DOI: 10.1016/j.vaccine.2019.05.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Adrienne N Villagomez
- University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital of Colorado, Aurora, CO, USA
| | - Flor M Muñoz
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Robin L Peterson
- University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital of Colorado, Aurora, CO, USA
| | - Alison M Colbert
- University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital of Colorado, Aurora, CO, USA
| | - Melissa Gladstone
- Department of Women and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | - Rebecca Wilson
- University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital of Colorado, Aurora, CO, USA
| | - Lee Fairlie
- Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Gwendolyn J Gerner
- Kennedy Krieger Institute, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jackie Patterson
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Nansi S Boghossian
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Vera Joanna Burton
- Kennedy Krieger Institute, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Jennifer C G Larson
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Abigail S Angulo
- University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital of Colorado, Aurora, CO, USA
| | - Jyoti Joshi
- Center for Disease Dynamics Economics & Policy, Amity Institute of Public Health, Amity University, India
| | - Mirjana Nesin
- Division of Microbiology and Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Padula
- Children's Hospital of Philadelphia, Department of Pediatrics, Philadelphia, PA, USA
| | - Sonali Kochhar
- Global Healthcare Consulting, India; University of Washington, Seattle, USA; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Amy K Connery
- University of Colorado School of Medicine, Aurora, CO, USA; Children's Hospital of Colorado, Aurora, CO, USA.
| |
Collapse
|
10
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
11
|
Strottmann DM, Zanluca C, Mosimann ALP, Koishi AC, Auwerter NC, Faoro H, Cataneo AHD, Kuczera D, Wowk PF, Bordignon J, Duarte Dos Santos CN. Genetic and biological characterisation of Zika virus isolates from different Brazilian regions. Mem Inst Oswaldo Cruz 2019; 114:e190150. [PMID: 31432892 PMCID: PMC6701881 DOI: 10.1590/0074-02760190150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) infections reported in recent epidemics have been linked
to clinical complications that had never been associated with ZIKV before.
Adaptive mutations could have contributed to the successful emergence of
ZIKV as a global health threat to a nonimmune population. However, the
causal relationships between the ZIKV genetic determinants, the pathogenesis
and the rapid spread in Latin America and in the Caribbean remain widely
unknown. OBJECTIVES The aim of this study was to characterise three ZIKV isolates obtained from
patient samples during the 2015/2016 Brazilian epidemics. METHODS The ZIKV genomes of these strains were completely sequenced and in
vitro infection kinetics experiments were carried out in cell
lines and human primary cells. FINDINGS Eight nonsynonymous substitutions throughout the viral genome of the three
Brazilian isolates were identified. Infection kinetics experiments were
carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human
monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and
AP61) and suggest that some of these mutations might be associated with
distinct viral fitness. The clinical isolates also presented differences in
their infectivity rates when compared to the well-established ZIKV strains
(MR766 and PE243), especially in their abilities to infect mammalian
cells. MAIN CONCLUSIONS Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous
substitutions, which could have an impact on the viral fitness in mammalian
and insect cells.
Collapse
Affiliation(s)
- Daisy Maria Strottmann
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Camila Zanluca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Ana Luiza Pamplona Mosimann
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Andrea C Koishi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Nathalia Cavalheiro Auwerter
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Helisson Faoro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Regulação da Expressão Gênica, Curitiba, PR, Brasil
| | | | - Diogo Kuczera
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Pryscilla Fanini Wowk
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | - Juliano Bordignon
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Virologia Molecular, Curitiba, PR, Brasil
| | | |
Collapse
|
12
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
13
|
Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg Microbes Infect 2019; 8:307-326. [PMID: 30866785 PMCID: PMC6455149 DOI: 10.1080/22221751.2019.1578188] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The harmful effects of ZIKA virus (ZIKV) infection are reflected by severe neurological manifestations such as microcephaly in neonates and other complications associated with Guillain-Barré syndrome in adults. The transmission dynamics of ZIKV in or between neurons, or within the developing brains of the foetuses are not fully understood. Using primary cultures of murine cortical neurons, we show that ZIKV uses exosomes as mediators of viral transmission between neurons. Cryo-electron microscopy showed heterogeneous population of neuronal exosomes with a size range of 30–200 nm. Increased production of exosomes from neuronal cells was noted upon ZIKV infection. Neuronal exosomes contained both ZIKV viral RNA and protein(s) that were highly infectious to naïve cells. RNaseA and neutralizing antibodies treatment studies suggest the presence of viral RNA/proteins inside exosomes. Exosomes derived from time- and dose-dependent incubations showed increasing viral loads suggesting higher packaging and delivery of ZIKV RNA and proteins. Furthermore, we noted that ZIKV induced both activity and gene expression of neutral Sphingomyelinase (nSMase)-2/SMPD3, an important molecule that regulates production and release of exosomes. Silencing of SMPD3 in neurons resulted in reduced viral burden and transmission through exosomes. Treatment with SMPD3 specific inhibitor GW4869, significantly reduced ZIKV loads in both cortical neurons and in exosomes derived from these neuronal cells. Taken together, our results suggest that ZIKV modulates SMPD3 activity in cortical neurons for its infection and transmission through exosomes perhaps leading to severe neuronal death that may result in neurological manifestations such as microcephaly in the developing embryonic brains.
Collapse
Affiliation(s)
- Wenshuo Zhou
- a Department of Biological Sciences, Center for Molecular Medicine , Old Dominion University , Norfolk , VA , USA
| | - Michael Woodson
- b Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , TX , USA
| | - Michael B Sherman
- b Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , TX , USA.,c Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , Galveston , TX , USA
| | - Girish Neelakanta
- a Department of Biological Sciences, Center for Molecular Medicine , Old Dominion University , Norfolk , VA , USA
| | - Hameeda Sultana
- a Department of Biological Sciences, Center for Molecular Medicine , Old Dominion University , Norfolk , VA , USA.,d Department of Medicine, Division of Infectious Diseases and International Health , University of Virginia School of Medicine , Charlottesville , VA , USA
| |
Collapse
|
14
|
Rosa-Fernandes L, Cugola FR, Russo FB, Kawahara R, de Melo Freire CC, Leite PEC, Bassi Stern AC, Angeli CB, de Oliveira DBL, Melo SR, Zanotto PMDA, Durigon EL, Larsen MR, Beltrão-Braga PCB, Palmisano G. Zika Virus Impairs Neurogenesis and Synaptogenesis Pathways in Human Neural Stem Cells and Neurons. Front Cell Neurosci 2019; 13:64. [PMID: 30949028 PMCID: PMC6436085 DOI: 10.3389/fncel.2019.00064] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/11/2019] [Indexed: 11/21/2022] Open
Abstract
Growing evidences have associated Zika virus (ZIKV) infection with congenital malformations, including microcephaly. Nonetheless, signaling mechanisms that promote the disease outcome are far from being understood, affecting the development of suitable therapeutics. In this study, we applied shotgun mass spectrometry (MS)-based proteomics combined with cell biology approaches to characterize altered molecular pathways on human neuroprogenitor cells (NPC) and neurons derived from induced pluripotent stem cells infected by ZIKV-BR strain, obtained from the 2015 Brazilian outbreak. Furthermore, ZIKV-BR infected NPCs showed unique alteration of pathways involved in neurological diseases, cell death, survival and embryonic development compared to ZIKV-AF, showing a human adaptation of the Brazilian viral strain. Besides, infected neurons differentiated from NPC presented an impairment of neurogenesis and synaptogenesis processes. Taken together, these data explain that CNS developmental arrest observed in Congenital Zika Syndrome is beyond neuronal cell death.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Fernanda Rodrigues Cugola
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Fabiele Baldino Russo
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Paulo Emílio Corrêa Leite
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Bassi Stern
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Stella Rezende Melo
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- School of Arts Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Marcello A, Pantano S. Interdisciplinary approaches to the study of flavivirus. Biochem Biophys Res Commun 2017; 492:531-532. [PMID: 28851652 DOI: 10.1016/j.bbrc.2017.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Alessandro Marcello
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| |
Collapse
|
16
|
Machado MR, González HC, Pantano S. MD Simulations of Viruslike Particles with Supra CG Solvation Affordable to Desktop Computers. J Chem Theory Comput 2017; 13:5106-5116. [DOI: 10.1021/acs.jctc.7b00659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matı́as R. Machado
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| | - Humberto C. González
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| | - Sergio Pantano
- Biomolecular Simulations
Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay
| |
Collapse
|