1
|
Peng L, Huang X, Qing D, Lu H, Liu X, Chen J, Long X, Pang Q. MiR-30a-5p inhibits cell behaviors in esophageal cancer via modulating CBX2. Mutat Res 2023; 826:111818. [PMID: 37196609 DOI: 10.1016/j.mrfmmm.2023.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND This investigation studied the impacts of the miR-30a-5p/CBX2 axis on esophageal cancer (EC). METHODS Research objects were ascertained using The Cancer Genome Atlas database. Followed by qRT-PCR, western blot, dual-luciferase reporter, MTT, Transwell, and wound healing approaches, we tested gene expression and varying cell behaviors RESULTS: Conspicuously miR-30 family members (miR-30a-5p, miR-30b-5p, miR-30c-5p, miR-30d-5p, miR-30e-5p) downregulation and CBX2 upregulation were discovered in EC cells. miR-30 family members target CBX2 and inhibited CBX2 expression. EC cell behaviors were inhibited by miR-30a-5p/CBX2 axis. CONCLUSION MiR-30a-5p draws a new inspiration for EC treatment.
Collapse
Affiliation(s)
- Luxing Peng
- The Department of Radiotherapy the Center of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| | - Xinjun Huang
- The Department of Radiotherapy the Center of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Defeng Qing
- The Department of Radiotherapy the Center of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Heming Lu
- The Department of Radiotherapy the Center of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xu Liu
- The Department of Radiotherapy the Center of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - JiaXin Chen
- The Department of Radiotherapy the Center of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xianfeng Long
- The Department of Radiotherapy the Center of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qiang Pang
- The Department of Radiotherapy the Center of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Ye Q, Raese R, Luo D, Cao S, Wan YW, Qian Y, Guo NL. MicroRNA, mRNA, and Proteomics Biomarkers and Therapeutic Targets for Improving Lung Cancer Treatment Outcomes. Cancers (Basel) 2023; 15:cancers15082294. [PMID: 37190222 DOI: 10.3390/cancers15082294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The majority of lung cancer patients are diagnosed with metastatic disease. This study identified a set of 73 microRNAs (miRNAs) that classified lung cancer tumors from normal lung tissues with an overall accuracy of 96.3% in the training patient cohort (n = 109) and 91.7% in unsupervised classification and 92.3% in supervised classification in the validation set (n = 375). Based on association with patient survival (n = 1016), 10 miRNAs were identified as potential tumor suppressors (hsa-miR-144, hsa-miR-195, hsa-miR-223, hsa-miR-30a, hsa-miR-30b, hsa-miR-30d, hsa-miR-335, hsa-miR-363, hsa-miR-451, and hsa-miR-99a), and 4 were identified as potential oncogenes (hsa-miR-21, hsa-miR-31, hsa-miR-411, and hsa-miR-494) in lung cancer. Experimentally confirmed target genes were identified for the 73 diagnostic miRNAs, from which proliferation genes were selected from CRISPR-Cas9/RNA interference (RNAi) screening assays. Pansensitive and panresistant genes to 21 NCCN-recommended drugs with concordant mRNA and protein expression were identified. DGKE and WDR47 were found with significant associations with responses to both systemic therapies and radiotherapy in lung cancer. Based on our identified miRNA-regulated molecular machinery, an inhibitor of PDK1/Akt BX-912, an anthracycline antibiotic daunorubicin, and a multi-targeted protein kinase inhibitor midostaurin were discovered as potential repositioning drugs for treating lung cancer. These findings have implications for improving lung cancer diagnosis, optimizing treatment selection, and discovering new drug options for better patient outcomes.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rebecca Raese
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Dajie Luo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Shu Cao
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ying-Wooi Wan
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Yong Qian
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Nancy Lan Guo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
3
|
Chen S, Shu G, Wang G, Ye J, Xu J, Huang C, Yang S. HOXA1 promotes proliferation and metastasis of bladder cancer by enhancing SMAD3 transcription. Pathol Res Pract 2022; 239:154141. [DOI: 10.1016/j.prp.2022.154141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022]
|
4
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
5
|
Zhang T, Su F, Lu YB, Ling XL, Dai HY, Yang TN, Zhang B, Zhao D, Hou XM. MYC/MAX-Activated LINC00958 Promotes Lung Adenocarcinoma by Oncogenic Transcriptional Reprogramming Through HOXA1 Activation. Front Oncol 2022; 12:807507. [PMID: 35223488 PMCID: PMC8864111 DOI: 10.3389/fonc.2022.807507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. The role of the long non-coding RNA (lncRNA) LINC00958, which regulates the malignant behavior of multiple tumors, in LUAD has not been elucidated. METHODS Tissue microarray, FISH, and qRT-PCR were used to detect the expression of LINC00958. Plasmid and viral infections were used to manipulate gene expression. The role of LINC00958 in LUAD was studied by cell proliferation analysis, cell apoptosis analysis, cell migration and invasion analysis, and subcutaneous inoculation of animal models. At the same time, RNA-Seq, RNA pull-down, ChIRP, ChIP, and luciferase reporter gene assays were performed to clarify the mechanism. RESULTS The expression of LINC00958 in LUAD tissues was significantly upregulated when compared with that in adjacent tissues and could independently predict poor survival of patients with LUAD. LINC00958 knockdown significantly inhibited the growth and metastasis of lung cancer cells in vitro and in vivo. LINC00958 localized to the nucleus, regulated oncogenes and metabolism-related and immune response-related genes, and interacted with histones. The targets of LINC00958 were TRPV3, STAP2, and EDN2 promoters with motifs of HOXA1, NANOG, FOSL2, JUN, and ATF4. Moreover, HOXA1 overexpression mitigated the LINC00958 knockdown-induced oncogenic phenotype. MYC/MAX motif, which was detected at the cis-element of LINC00958, trans-activated the LINC00958 promoter. CONCLUSIONS MYC/MAX-trans-activated LINC00958 promotes the malignant behavior of LUAD by recruiting HOXA1 and inducing oncogenic reprogramming.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China.,The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Bin Lu
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Ling Ling
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Huan-Yu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tian-Ning Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Ming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Fu ZJ, Chen Y, Xu YQ, Lin MA, Wen H, Chen YT, Pan PL. Regulation of miR-30b in cancer development, apoptosis, and drug resistance. Open Life Sci 2022; 17:102-106. [PMID: 35291564 PMCID: PMC8886600 DOI: 10.1515/biol-2022-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
miR-30b, which is encoded by the gene located on chromosome 8q24.22, plays an important role in a variety of diseases. In most types of tumors, miR-30b significantly inhibits the proliferation, migration, and invasion of cancer cells through the regulation of target genes. Moreover, miR-30b can inhibit the PI3K/AKT signaling pathway through the regulation of EGFR, AKT, Derlin-1, GNA13, SIX1, and other target genes, thus inhibiting the EMT process of tumor cells and promoting apoptosis. In addition, miR-30 plays a significant role in alleviating drug resistance in tumor cells. Although the use of miR-30b as a clinical diagnostic indicator or anticancer drug is still facing great difficulties in the short term, with the deepening of research, the potential application of miR-30b is emerging.
Collapse
Affiliation(s)
- Zhen-Jie Fu
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Yan Chen
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Yu-Qin Xu
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Mei-Ai Lin
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Hang Wen
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Yi-Tao Chen
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| | - Pei-Lei Pan
- School of Life Sciences, Zhejiang Chinese Medical University , No. 548 Binwen Road, Binjiang District , Hangzhou 310053 , China
| |
Collapse
|
7
|
Qiu H, Shen X, Chen B, Chen T, Feng G, Chen S, Feng D, Xu Q. miR-30b-5p inhibits cancer progression and enhances cisplatin sensitivity in lung cancer through targeting LRP8. Apoptosis 2021; 26:261-276. [PMID: 33779882 DOI: 10.1007/s10495-021-01665-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/24/2022]
Abstract
Accumulated evidence has demonstrated that miRNAs are closely implicated in lung carcinogenesis. Herein, we explored the expression pattern of miR-30b-5p in lung cancer, and aimed to uncover miR-30b-5p roles in lung cancer progression and drug resistance. miR-30b-5p expression profiles in lung cancer tissues and the matched non-tumor tissues were determined by using qPCR. Cell viability, migration, invasion and in vivo tumorigenesis were determined by using the CCK-8, colony formation, wound healing, transwell chambers experiments and tumor xenograft models. RNA immunoprecipitation (RIP) and dual luciferase reporter experiments were applied to evaluate the relationship between miR-30b-5p and LRP8. The results demonstrated that miR-30b-5p showed a low expression profile in lung cancer tissues and cells, and closely linked to poor prognosis and malignant clinical process. Cell viability, migration, invasiveness and tumorigenesis were significantly weakened following miR-30b-5p overexpression in A549 and NCI-H1299 cells, while cell apoptosis rates were increased. In addition, miR-30b-5p was lowly expressed in A549/DDP (a cisplatin drug resistant cell line) as compared with A549 cells, and miR-30b-5p increased A549/DDP cell sensitivity to DDP. However, these above roles of miR-30b-5p were all significantly impaired following the overexpression of LRP8 which was overexpressed in lung cancer tissues. Collectively, this study demonstrated that miR-30b-5p functions as a tumor suppressor in lung cancer, and re-sensitizes lung cancer cells to DDP by targeting LRP8.
Collapse
Affiliation(s)
- Haitao Qiu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, No. 42, Baiziting, Xuanwu district, Nanjing, 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210009, China
| | - Xiaokang Shen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, No. 42, Baiziting, Xuanwu district, Nanjing, 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210009, China
| | - Bing Chen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, No. 42, Baiziting, Xuanwu district, Nanjing, 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210009, China
| | - Tianming Chen
- Nanjing Medical University, Third Affiliated Hospital, Nanjing, 210009, China
| | - Guodong Feng
- Department of Interventional Therapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210009, China
| | - Shilin Chen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, No. 42, Baiziting, Xuanwu district, Nanjing, 210009, China.
| | - Dongjie Feng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, No. 42, Baiziting, Xuanwu district, Nanjing, 210009, China.
| | - Qiaoshu Xu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Murria Estal R, de Unamuno Bustos B, Pérez Simó G, Simarro Farinos J, Torres Navarro I, Alegre de Miquel V, Ballester Sánchez R, Sabater Marco V, Llavador Ros M, Palanca Suela S, Botella Estrada R. MicroRNAs expression associated with aggressive clinicopathological features and poor prognosis in primary cutaneous melanomas. Melanoma Res 2021; 31:18-26. [PMID: 33234848 DOI: 10.1097/cmr.0000000000000709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several studies have focused on identifying microRNAs involved in the pathogenesis of melanoma. However, its association with clinicopathological features has been scarcely addressed. The aim of this study is to identify microRNAs expression profiles related to aggressive clinicopathological and molecular features, and to analyze the association with melanoma survival. A retrospective and observational study was performed in a series of 179 formalin-fixed paraffin embedded primary cutaneous melanomas. First, a screening analysis on a discovery set (n = 22) using miRNA gene chip array (Affymetrix, Santa Clara, California, USA) was performed. Differentially expressed microRNAs were detected employing the software Partek Genomic Suite. Validation of four microRNAs was subsequently performed in the entire series (n = 179) by quantitative real time PCR (qRT-PCR). MicroRNAs expression screening analysis identified 101 microRNAs differentially expressed according to Breslow thickness (≤1 mm vs. >1 mm), 79 according to the presence or absence of ulceration, 78 according to mitosis/mm2 (<1 mitosis vs. ≥1 mitosis) and 97 according to the TERT promoter status (wt vs. mutated). Six microRNAs (miR-138-5p, miR-130b-3p, miR-30b-5p, miR-34a-5p, miR-500a-5p, miR-339-5p) were selected for being validated by qRT-PCR in the discovery set (n = 22). Of those, miR-138-5p, miR-130b-3p, miR-30b-5p, miR-34a-5p were selected for further analysis in the entire series (n = 179). Overexpression of miR-138-5p and miR-130b-3p was significantly associated with greater Breslow thickness, ulceration, and mitosis. TERT mutated melanomas overexpressed miR-138-5p. Kaplan-Meier survival analysis showed poorer survival in melanomas with miR-130b-3p overexpression. Our findings provide support for the existence of a microRNA expression profile in melanomas with aggressive clinicopathological features and poor prognosis.
Collapse
Affiliation(s)
- Rosa Murria Estal
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Blanca de Unamuno Bustos
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Gema Pérez Simó
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Javier Simarro Farinos
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | | | | | | | - Vicente Sabater Marco
- Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | | | - Sarai Palanca Suela
- Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Rafael Botella Estrada
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
- Department of Medicine, School of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
9
|
Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B, Xin Y. Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders (Review). Exp Ther Med 2021; 21:44. [PMID: 33273973 PMCID: PMC7706387 DOI: 10.3892/etm.2020.9475] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs 21-23 nucleotides in length that regulate gene expression, and thereby modulate signaling pathways and protein synthesis in both physiological and pathogenic processes. miR-30b inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transformation in multiple types of cancer. In addition to its role in several types of neoplasias, miR-30b has been shown to exhibit essential roles in cardiovascular and metabolic diseases. In the present review, an overview of the biological functions of miR-30b and its role in the pathogenesis of neoplastic, cardiovascular and metabolic diseases is provided. miR-30b is a potential candidate for clinical development as a diagnostic and prognostic biomarker, therapeutic agent and drug target. However, further research is required to elucidate its role in health and disease and to harness its potential clinical utility.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Jie Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Xuefeng Ma
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Mengzhen Dong
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Baokai Sun
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
10
|
Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, Hamblin MR, Mirzaei H. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol 2020; 157:103192. [PMID: 33290823 DOI: 10.1016/j.critrevonc.2020.103192] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic cancers involve the female genital organs, such as the vulva, vagina, cervix, endometrium, ovaries, and fallopian tubes. The occurrence and frequency of gynecologic cancer depends on personal lifestyle, history of exposure to viruses or carcinogens, genetics, body shape, and geographical habitat. For a long time, research into the molecular biology of cancer was broadly restricted to protein-coding genes. Recently it has been realized that non-coding RNAs (ncRNA), including long noncoding RNAs (LncRNAs), microRNAs, circular RNAs and piRNAs (PIWI-interacting RNAs), can all play a role in the regulation of cellular function within gynecological cancer. It is now known that ncRNAs are able to play dual roles, i.e. can exert both oncogenic or tumor suppressive functions in gynecological cancer. Moreover, several clinical trials are underway looking at the biomarker and therapeutic roles of ncRNAs. These efforts may provide a new horizon for the diagnosis and treatment of gynecological cancer. Herein, we summarize some of the ncRNAs that have been shown to be important in gynecological cancers.
Collapse
Affiliation(s)
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Majidi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Hong H, Yao S, Zhang Y, Ye Y, Li C, Hu L, Sun Y, Huang HY, Ji H. In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor. PLoS Genet 2020; 16:e1009168. [PMID: 33137086 PMCID: PMC7660552 DOI: 10.1371/journal.pgen.1009168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/12/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in the development of various cancers including lung cancer which is one of the devastating diseases worldwide. How miRNAs function in de novo lung tumorigenesis remains largely unknown. We here developed a CRISPR/Cas9-mediated dual guide RNA (dgRNA) system to knockout miRNAs in genetically engineered mouse model (GEMM). Through bioinformatic analyses of human lung cancer miRNA database, we identified 16 downregulated miRNAs associated with malignant progression and performed individual knockout with dgRNA system in KrasG12D/Trp53L/L (KP) mouse model. Using this in vivo knockout screening, we identified miR-30b and miR-146a, which has been previously reported as tumor suppressors and miR-190b, a new tumor-suppressive miRNA in lung cancer development. Over-expression of miR-190b in KP model as well as human lung cancer cell lines significantly suppressed malignant progression. We further found that miR-190b targeted the Hus1 gene and knockout of Hus1 in KP model dramatically suppressed lung tumorigenesis. Collectively, our study developed an in vivo miRNA knockout platform for functionally screening in GEMM and identified miR-190b as a new tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Hui Hong
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shun Yao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Yi Ye
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Cheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
- Center for Statistical Science, Center for Bioinformatics, Peking University, Beijing, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
12
|
MiR-30b-5p inhibits proliferation and promotes apoptosis of medulloblastoma cells via targeting MYB proto-oncogene like 2 (MYBL2). J Investig Med 2020; 68:1179-1185. [DOI: 10.1136/jim-2020-001354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumors among children. MiR-30b-5p is a potential tumor suppressor in a variety of human cancers. However, its expression and function in MB remain poorly understood. This study aimed to investigate the expression, role and regulatory mechanism of miR-30b-5p in MB. The expression of miR-30b-5p in MB tissues and cell lines was detected by real-time PCR. The effects of miR-30b-5p on cell proliferation and apoptosis were monitored by CCK-8 (Cell Counting Kit-8) assay, colony formation assay and flow cytometry, respectively. Bioinformatics database TargetScan predicted the target genes of miR-30b-5p. The interaction between miR-30b-5p and MYB proto-oncogene Like 2 (MYBL2) was determined by luciferase reporter gene assay. We demonstrated that the expression of miR-30b-5p was significantly downregulated in MB. Upregulated miR-30b-5p could inhibit the proliferation and induce apoptosis of MB.Moreover, overexpressed miR-30b-5p could increase the expression of BAX but decrease that of Bcl-2. Downregulated miR-30b-5p exerted the opposite effect. MYBL2 was proved to be the target gene of miR-30b-5p and was negatively regulated by miR-30b-5p. These results indicate that miR-30b-5p inhibits the progression of MB via targeting the expression of MYBL2.
Collapse
|
13
|
Brotto DB, Siena ÁDD, de Barros II, Carvalho SDCES, Muys BR, Goedert L, Cardoso C, Plaça JR, Ramão A, Squire JA, Araujo LF, Silva WAD. Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review. Tumour Biol 2020; 42:1010428320918050. [PMID: 32456563 DOI: 10.1177/1010428320918050] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.
Collapse
Affiliation(s)
- Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Ádamo Davi Diógenes Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Lucas Goedert
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cibele Cardoso
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jeremy Andrew Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Luiza Ferreira Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Center for Integrative System Biology (CISBi), NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.,Center for Medical Genomics, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Li X, Wang B, Huang M, Wang X. miR-30a-3p participates in the development of asthma by targeting CCR3. Open Med (Wars) 2020; 15:483-491. [PMID: 33313407 PMCID: PMC7706126 DOI: 10.1515/med-2020-0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
This study aimed to investigate the role and relevant mechanism of miR-30a-3p action in asthma. The results of this study revealed that the expression levels of miR-30a-3p were significantly decreased in the peripheral blood of asthmatic patients. In addition, we found that the CC chemokine receptor (CCR3) was a target of miR-30a-3p. Subsequently, an asthma mouse model was established using ovalbumin (OVA). The results showed that the expression of miR-30a-3p and CCR3 was downregulated and upregulated, respectively, in the peripheral blood of asthmatic mice. Enzyme-linked immunosorbent assay (ELISA) in asthmatic mouse serum demonstrated that miR-30a-3p mimic treatment significantly decreased the secretion of OVA-specific IgE, eotaxin-1, interleukin (IL)-5, and IL-4. These results suggested that miR-30a-3p inhibited CCR3 signaling pathway and relieved the inflammatory response against asthma in vivo. Eosinophils have also been implicated in the asthmatic inflammatory response. Therefore, the in vitro effects of miR-30a-3p on eosinophil activity were determined. Findings suggested that miR-30a-3p mimic significantly reduced eosinophil viability and migration and induced apoptosis. In addition, CCR3 and eotaxin-1 downregulation were observed. The aforementioned results were significantly reversed following CCR3 overexpression. This study suggested that miR-30a-3p was involved in asthma by regulating eosinophil activity and targeting CCR3.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Respiratory and Critical Care Medicine, Taizhou First People's Hospital, Taizhou 318020, P. R. China
| | - Binliang Wang
- Department of Respiratory and Critical Care Medicine, Taizhou First People's Hospital, Taizhou 318020, P. R. China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, Taizhou First People's Hospital, Taizhou 318020, P. R. China
| | - Xiaomi Wang
- Department of Respiratory and Critical Care Medicine, Taizhou First People's Hospital, Taizhou 318020, P. R. China
| |
Collapse
|
15
|
Liao G, Tang J, Wang D, Zuo H, Zhang Q, Liu Y, Xiong H. Selenium nanoparticles (SeNPs) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J Surg Oncol 2020; 18:81. [PMID: 32357938 PMCID: PMC7195723 DOI: 10.1186/s12957-020-01850-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives This research aimed to examine the antitumor mechanisms of selenium nanoparticles (SeNPs) specifically against prostate cancers. Methods The antitumor activities of SeNPs against cancer cells were determined via MTT assay. The cell cycle was determined by detecting the DNA content, and apoptosis was determined via annexin V-Fluos staining kit. The microRNA expressions in cancer cells were analyzed via microarray and qRT-PCR. The potential targets of miR-16 were identified via luciferase analysis and mRNA expression determination. miR-16 functions in cancer cells were explored via the transient transfection of miR-16 mimic or inhibitor. Results SeNPs were most potent in prostate cancer cells, regardless of whether or not they were androgen-dependent. Furthermore, SeNP stimulation can induce cell cycle arrest and the apoptosis enhancement of prostate cancer cells. Microarray and molecular mechanism studies demonstrated that miR-16 could directly target cyclin D1 and BCL-2 to mediate SeNP apoptosis enhancement. Results show that the serum selenium levels positively correlate with miR-16 expressions, and they correlate with the overall and disease-free survival rates. Conclusion These results signify the cytotoxic potential of SeNPs in prostate cancer treatment.
Collapse
Affiliation(s)
- Guolong Liao
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiani Tang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Di Wang
- Department of Clinical Laboratory, PLA 309 Hospital, Beijing, China
| | - Haoru Zuo
- Department of Surgery Anesthesia Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qi Zhang
- Department of Surgery Anesthesia Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ying Liu
- Department of Surgery Anesthesia Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haiyun Xiong
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
16
|
Ba Y, Liu Y, Li C, Zhu Y, Xing W. HIPK3 Promotes Growth and Metastasis of Esophageal Squamous Cell Carcinoma via Regulation of miR-599/c-MYC Axis. Onco Targets Ther 2020; 13:1967-1978. [PMID: 32189968 PMCID: PMC7064370 DOI: 10.2147/ott.s217087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Background/Aims this experimental design was based on HIPK3 to explore the pathogenesis of ESCC. Methods RT-qPCR was used to detect the expression of CircHIPK3 and miR-599 in ESCC tissues and cell lines.CCK-8, colony formation, flow cytometry and transwell assay were used to detect the effects of CircHIPK3 and miR-599 on tumor cell proliferation, apoptosis and migration and invasion. Target gene prediction and screening, luciferase reporter assays were used to validate downstream target genes of CircHIPK3 and miR-599.mRNA and protein expression of c-MYC were detected by RT-qPCR and Western blotting. The tumor changes in mice were detected by in vivo experiments in nude mice. Results HIPK3 was highly expressed in ESCC tissues and cell lines. In addition, HIPK3 expression levels were associated with advanced TNM stage, lymph node metastasis and tumor size. Moreover, HIPK3 was significantly promoted cell proliferation and migration of ESCC cells. In addition, HIPK3 was able to inhibit miRNA-599 expression and up-regulate the expression level of c-MYC. Finally, the results of in vivo animal models confirmed that HIPK3 promoted ESCC progression by modulating the miR-599/c-MYC axis. Conclusion HIPK3 can regulate the proliferation of esophageal squamous cell carcinoma cells by regulating miR-599/c-MYC axis, thereby inhibiting the occurrence and development of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Yufeng Ba
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450008, People's Republic of China
| | - Yining Liu
- Department of Medical Records, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450008, People's Republic of China
| | - Changsheng Li
- Department of Anesthesiology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450008, People's Republic of China
| | - Yu Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Wenqun Xing
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450008, People's Republic of China
| |
Collapse
|
17
|
Zhao C, Dang Z, Sun J, Yuan S, Xie L. Up-regulation of microRNA-30b/30d cluster represses hepatocyte apoptosis in mice with fulminant hepatic failure by inhibiting CEACAM1. IUBMB Life 2020; 72:1349-1363. [PMID: 32101367 DOI: 10.1002/iub.2256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Recently, impacts of microRNAs have been unraveled in human diseases, and we aimed to confirm the role of miR-30b/30d in fulminant hepatic failure (FHF). Expression of miR-30b/30d and CEACAM1 in serum of FHF patients and healthy people was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Mice FHF models were established by injection of D-Galn and lipopolysaccharide, and were treated with miR-30b/30d mimics. Oxidative stress, liver injury, and inflammatory reaction in mouse liver tissues were measured using oxidative stress-related factor kits, hematoxylin-eosin staining and enzyme-linked immunosorbent assay, respectively. Moreover, cell cycle distribution and apoptosis of hepatocytes of mice were determined by flow cytometry, and the target relation between miR-30b/30d and CEACAM1 was confirmed by bioinformatic method and dual luciferase reporter gene assay. MiR-30b/30d expression was positively, and CEACAM1 expression was negatively related to prognosis of FHF patients. Up-regulation of miR-30b/30d attenuated oxidative stress, liver injury, and inflammatory reaction, and improved survival rate of FHF mice. Furthermore, elevated miR-30b/30d ameliorated apoptosis and cell cycle arrest of hepatocytes of FHF mice. CEACAM1 was a target gene of miR-30b/30d. This study highlights that up-regulated miR-30b/30d attenuates the progression of FHF by targeting CEACAM1, which may be helpful to FHF treatment.
Collapse
Affiliation(s)
- Changpu Zhao
- Internal Medicine Department, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhongqin Dang
- Hepatobiliary Spleen and Stomach Department, Henan Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junbo Sun
- Personnel Office, Henan Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuaiqiang Yuan
- Department of Digestion, Affiliated Hospital of Henan Academy of Chinese Medicine, Zhengzhou, China
| | - Li Xie
- Internal Medicine Department, Henan Electric Power Hospital, Zhengzhou, China
| |
Collapse
|
18
|
He W, Huang Y, Jiang CC, Zhu Y, Wang L, Zhang W, Huang W, Zhou T, Tang S. miR-100 Inhibits Cell Growth and Proliferation by Targeting HOXA1 in Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:593-602. [PMID: 32021301 PMCID: PMC6980857 DOI: 10.2147/ott.s228783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Background Increasing evidence indicates that the dysregulation of miRNAs plays a vital role in tumorigenesis and progression of nasopharyngeal carcinoma (NPC). Thus, it is necessary to further investigate the function and mechanism of miRNAs in NPC. Methods miR-100 expression was analyzed using publicly available databases and then tested using quantitative RT-PCR in NPC tissues and cell lines. MTT and colony formation assays and xenograft tumor model were used to test the NPC cell growth and proliferation abilities while modulating miR-100 expression. The target of miR-100 was predicted with TargetScan and validated with luciferase reporter assay, quantitative RT-PCR, and Western blot. Results The expression of miR-100 was significantly reduced in NPC tissues and cell lines. Overexpression of miR-100 obviously suppressed NPC cell growth and proliferation, whereas silencing miR-100 promoted NPC cell growth and proliferation in vitro. HOXA1 (homeobox A1) was validated as a direct target of miR-100, and restoring HOXA1 expression could reverse the inhibitive effect of miR-100 on NPC cell growth and proliferation. The mRNA and protein expression of HOXA1 was increased in NPC cell lines. Furthermore, ectopic expression of miR-100 inhibited xenograft tumor growth in vivo. Conclusion Taken together, our findings suggest that miR-100 could suppress NPC growth and proliferation through targeting HOXA1, providing a novel target for the miRNA-mediated therapy for patients with NPC in the future.
Collapse
Affiliation(s)
- Weifeng He
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Cheng Chuan Jiang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Yuan Zhu
- People's Hospital of Changshou Chongqing, Chongqing 401220, People's Republic of China
| | - Ling Wang
- Yi Chang Central People's Hospital, Yichang 443000, Hubei Province, People's Republic of China
| | - Weiwei Zhang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Ting Zhou
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China.,Department of Clinical Pharmacy, College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, People's Republic of China
| | - Sanyuan Tang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| |
Collapse
|
19
|
Sun X, Wang T, Huang B, Ruan G, Xu A. ΜicroRNA‑421 participates in vitiligo development through regulating human melanocyte survival by targeting receptor‑interacting serine/threonine kinase 1. Mol Med Rep 2019; 21:858-866. [PMID: 31974624 PMCID: PMC6947834 DOI: 10.3892/mmr.2019.10878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
Vitiligo is a common localized or generalized skin pigmentation disorder. Endoplasmic reticulum (ER) stress may be implicated in the development of vitiligo. microRNA-421 (miR-421) has been reported to be dysregulated in various human tumors. However, there is no report to date on the role of miR-421 in vitiligo development. The present study demonstrated that 3 µM tunicamycin (TM) increased the expression of the ER stress-related proteins protein kinase RNA-like endoplasmic reticulum kinase (PERK), α subunit of eukaryotic translation initiation factor 2 (eIF2α) and C/EBP homologous protein (CHOP) in human primary epidermal melanocytes. Moreover, TM suppressed melanocyte viability and induced apoptosis. Reverse transcription-quantitative PCR analysis demonstrated that TM promoted miR-421 expression in human melanocytes. Next, TargetScan and dual luciferase reporter gene assay indicated that receptor-interacting serine/threonine kinase 1 (RIPK1) was a direct target of miR-421. RIPK1 expression was significantly downregulated in TM-induced human melanocytes. Subsequently, the effect of miR-421 downregulation on the damage of human melanocytes induced by ER stress was investigated. Human melanocytes were transfected with inhibitor control, miR-421 inhibitor, miR-421 inhibitor + control-short hairpin (sh)RNA, or miR-421 inhibitor + RIPK1-shRNA for 24 h and then treated with TM (3 µM) for 48 h. TM was found to upregulate PERK, eIF2α and CHOP protein expression in human melanocytes, which was reduced by an miR-421 inhibitor. In addition, the miR-421 inhibitor increased viability and reduced apoptosis in TM-treated melanocytes. Furthermore, all these effects of the miR-421 inhibitor on TM-induced human melanocytes were reversed by RIPK1-shRNA. Further analyses revealed that the miR-421 inhibitor activated the phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin signaling pathway in TM-induced human melanocytes. These data collectively suggest that miR-421 may serve as a new treatment target in vitiligo development.
Collapse
Affiliation(s)
- Xuecheng Sun
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Tao Wang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Bo Huang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Gaobo Ruan
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Aie Xu
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
20
|
Xu X, Lu Z, Gross N, Li G, Zhang F, Lei D, Pan X. A 3-miRNA signature predicts survival of patients with hypopharyngeal squamous cell carcinoma after post-operative radiotherapy. J Cell Mol Med 2019; 23:8280-8291. [PMID: 31578816 PMCID: PMC6850940 DOI: 10.1111/jcmm.14702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/23/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Since the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) remains poor, identification of miRNA as a potential prognostic biomarker for HSCC may help improve personalized therapy. In the 2 cohorts with a total of 511 patients with HSCC (discovery: N = 372 and validation: N = 139) after post-operative radiotherapy, we used miRNA microarray and qRT-PCR to screen out the significant miRNAs which might predict survival. Associations of miRNAs and the signature score of these miRNAs with survival were performed by Kaplan-Meier survival analysis and multivariate Cox hazard model. Among 9 candidate, miRNAs, miR-200a-3p, miR-30b-5p, miR-3161, miR-3605-5p, miR-378b and miR-4451 were up-regulated, while miR-200c-3p, miR-429 and miR-4701 were down-regulated after validation. Moreover, the patients with high expression of miR-200a-3p, miR-30b-5p and miR-4451 had significantly worse overall survival (OS) and disease-specific survival (DSS) than did those with low expression (log-rank P < .05). Patients with a high-risk score had significant worse OS and DSS than those with low-risk score. Finally, after adjusting for other important prognostic confounders, patients with high expression of miR-200a-3p, miR-30b-5p and miR-4451 had significantly high risk of overall death and death owing to HSCC and patients with a high-risk score has approximately 2-fold increased risk in overall death and death owing to HSCC compared with those with a low-risk score. These findings indicated that the 3-miRNA-based signature may be a novel independent prognostic biomarker for patients given surgery and post-operative radiotherapy, supporting that these miRNAs may jointly predict survival of HSCC.
Collapse
Affiliation(s)
- Xinbo Xu
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Zhongming Lu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Neil Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fenghua Zhang
- Thyroid and Breast Surgery Department, Hebei General Hospital, Shijiazhuang, China
| | - Dapeng Lei
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Xinliang Pan
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|
21
|
Lin X, Pavani KC, Smits K, Deforce D, Heindryckx B, Van Soom A, Peelman L. Bta-miR-10b Secreted by Bovine Embryos Negatively Impacts Preimplantation Embryo Quality. Front Genet 2019; 10:757. [PMID: 31507632 PMCID: PMC6713719 DOI: 10.3389/fgene.2019.00757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases (DNMTs). Using several algorithms, Homeobox A1 (HOXA1) was identified as one of the potential miR-10b target genes and dual-luciferase assay confirmed HOXA1 as a direct target of miR-10b. Microinjection of si-HOXA1 into embryos also resulted in an increase in embryonic cell apoptosis and downregulation of DNMTs. Cell progression analysis using Madin–Darby bovine kidney cells (MDBKs) showed that miR-10b overexpression and HOXA1 knockdown results in suppressed cell cycle progression and decreased cell viability. Overall, this work demonstrates that miR-10b negatively influences embryo quality and might do this through targeting HOXA1 and/or influencing DNA methylation.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Katrien Smits
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Xu J, Lv H, Zhang B, Xu F, Zhu H, Chen B, Zhu C, Shen J. miR-30b-5p acts as a tumor suppressor microRNA in esophageal squamous cell carcinoma. J Thorac Dis 2019; 11:3015-3029. [PMID: 31463131 DOI: 10.21037/jtd.2019.07.50] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background To study miR-30b-5p expression in esophageal squamous cell carcinoma (ESCC) by comparisons between tumor tissues and matched adjacent non-cancerous tissues to elucidate the correlation between miR-30b-5p expression and ESCC clinical parameters, and to explore the signaling pathways associated with miR-30b-5p and key target genes. Methods Clinical data, cancer tissues, and adjacent non-cancerous tissues of 32 patients diagnosed with ESCC were collected from Taizhou Hospital of Zhejiang Province. The expression levels of miR-30b-5p were determined by real-time polymerase chain reaction (RT-PCR). mRNA data for ESCC tissues and normal tissues, and clinical materials of patients with ESCC were obtained from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA). Associations between miR-30b-5p expression and clinical features of patients with ESCC and overall survival were explored. A bioinformatics analysis was performed to determine the pathways and key miR-30b-5p targets associated with ESCC. Additionally, a cytological experiment was performed to evaluate the biological functions of miR-30b-5p. Finally, correlations between miR-30b-5p and key targets involved in PI3K/Akt signaling pathways were validated by western blotting. Results The expression level of miR-30b-5p in the 32 ESCC tissues was significantly lower than that in adjacent normal tissues (P<0.01) and was significantly disparate in the T stage, with higher expression in T1 than in T2 (P<0.05). Among the patients with higher expression levels of miR-30b-5p in ESCC tissues than in adjacent normal tissues, patients with higher expression of miR-30b-5p had a better prognosis (P<0.05). An analysis of gene chip data from the GEO database showed similar results. A gene enrichment analysis indicated a series of pathways that may be associated with the downregulation of miR-30b-5p, including focal adhesion, ECM-receptor interaction, and PI3K/Akt signaling pathways. Seven key target genes (PDGFRB, VIM, ITGA5, ACTN1, THBS2, SERPINE1, and RUNX2) were identified; these were found to be upregulated in ESCC tissues and were negatively correlated with miR-30b-5p. Functional experiments showed that miR-30b-5p attenuated migration (P<0.01) and invasion (P<0.05) in the Eca109 cell line. Moreover, the levels of ITGA5, PDGFRB, p-PI3K, and p-AKT, which are involved in the PI3K/Akt signaling pathway, were decreased in the miR-30b-5p-overexpressing Eca109 cell line. Conclusions Upregulated miR-30b-5p may inhibit migration and invasion in ESCC by targeting ITGA5, PDGFRB, and signaling pathways, such as PI3K/Akt, involved in ESCC regulation. Our results indicate that miR-30b-5p plays an important role in the occurrence and progression of ESCC and is a potential therapeutic target.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Haiyan Lv
- Enze Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Bo Zhang
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Feng Xu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Hongyu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Chengchu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| |
Collapse
|
23
|
Jadideslam G, Ansarin K, Sakhinia E, Babaloo Z, Abhari A, Ghahremanzadeh K, Khalili M, Radmehr R, Kabbazi A. Diagnostic biomarker and therapeutic target applications of miR-326 in cancers: A systematic review. J Cell Physiol 2019; 234:21560-21574. [PMID: 31069801 DOI: 10.1002/jcp.28782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous mediators of RNA interference and have key roles in the modulation of gene expression under healthy, inflamed, stimulated, carcinogenic, or other cells, and tissues of a pathological state. Many studies have proved the association between miRNAs and cancer. The role of miR-326 as a tumor suppressor miRNA in much human cancer confirmed. We will explain the history and the role of miRNAs changes, especially miR-326 in cancers and other pathological conditions. Attuned with these facts, this review highlights recent preclinical and clinical research performed on miRNAs as novel promising diagnostic biomarkers of patients at early stages, prediction of prognosis, and monitoring of the patients in response to treatment. All related publications retrieved from the PubMed database, with keywords such as epigenetic, miRNA, microRNA, miR-326, cancer, diagnostic biomarker, and therapeutic target similar terms from 1899 to 2018 with limitations in the English language. Recently, researchers have focused on the impacts of miRNAs and their association in inflammatory, autoinflammatory, and cancerous conditions. Recent studies have suggested a major pathogenic role in cancers and autoinflammatory diseases. Investigations have explained the role of miRNAs in cancers, autoimmunity, and autoinflammatory diseases, and so on. The miRNA-326 expression has an important role in cancer conditions and other diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology Medicine Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Division of Clinical Biochemistry, Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Ghahremanzadeh
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohamadreza Khalili
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Rahman Radmehr
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Kabbazi
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Tao C, Sun H, Sang W, Li S. miRNA-99a inhibits cell invasion and migration in liver cancer by directly targeting HOXA1. Oncol Lett 2019; 17:5108-5114. [PMID: 31186723 PMCID: PMC6507307 DOI: 10.3892/ol.2019.10199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Liver cancer is a malignant tumor that threatens human health worldwide. It has poor prognosis rates and ineffective therapeutic options. Recently, various miRNAs have been proven to exert promoting or inhibiting functions in different malignancies. However, the definitive mechanisms of miR-99a in liver cancer remain unclear. In the current study, we explored the relationships between the expression of miR-99a and HOXA1 in liver cancer tissues and cells to explore their combined effects on the occurrence and metastasis of liver cancer. The expression of miR-99a and HOXA1 in liver cancer tissue samples and cells was measured by RT-qPCR. Following transfection, transwell assays were conducted to assess the invasion and migration capacities of liver cancer cells. Subsequently, western blots and luciferase reporter assays were performed in liver cancer cells to identify the target of miR-99a. The data indicated that miRNA-99a expression was significantly reduced in both liver cancer tissue samples and cells compared with normal tissues and normal liver cells respectively. By contrast, the HOXA1 expression levels in liver cancer tissues and cells were significantly increased in contrast to the control group. The findings also revealed that the miR-99a expression was negatively correlated with HOXA1 expression in liver cancer tissue samples and miR-99a could suppress cell invasion and migration by targeting HOXA1 in liver cancer.
Collapse
Affiliation(s)
- Changming Tao
- Department of Hepatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Huiling Sun
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Weiwei Sang
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Shanshan Li
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
25
|
Mao Y, Zhang L, Li Y. circEIF4G2 modulates the malignant features of cervical cancer via the miR‑218/HOXA1 pathway. Mol Med Rep 2019; 19:3714-3722. [PMID: 30896864 PMCID: PMC6471440 DOI: 10.3892/mmr.2019.10032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) serve important roles in tumorigenesis and may be used as novel molecular biomarkers for clinical diagnosis. However, the role and molecular mechanisms of circRNAs in cervical cancer (CC) remain unknown. In the present study, circRNA isoform of eukaryotic translation initiation factor 4γ2 (circEIF4G2) was revealed to be significantly upregulated in CC tissues and cell lines. Furthermore, increased expression of circEIF4G2 was associated with poor prognosis in patients with CC. circEIF4G2 knockdown suppressed the malignant features of CC cells, including cell proliferation, colony formation, migration and invasion. Additionally, circEIF4G2 was identified to serve as a sponge for microRNA-218 (miR-218), which targeted homeobox A1 (HOXA1). Furthermore, circEIF4G2 may increase the expression levels of HOXA1 by sponging miR-218. Rescue experiments suggested that transfection with a miR-218 inhibitor attenuated the inhibitory effects of circEIF4G2 knockdown on cell proliferation, migration and invasion. Furthermore, silencing HOXA1 reversed the effects of the miR-218 inhibitor on CC cells. Collectively, the present findings suggested that circEIF4G2 promoted cell proliferation and migration via the miR-218/HOXA1 pathway.
Collapse
Affiliation(s)
- Yifan Mao
- Department of Gynecology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Liya Zhang
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yuan Li
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
26
|
Zhou J, Xiang AZ, Guo JF, Cui HD. miR-30b suppresses the progression of breast cancer through inhibition of the PI3K/Akt signaling pathway by targeting Derlin-1. Transl Cancer Res 2019; 8:180-190. [PMID: 35116747 PMCID: PMC8798179 DOI: 10.21037/tcr.2019.01.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Background MicroRNAs (miRNAs) play an essential role in the initiation, progression and metastasis of breast cancer. It has been confirmed that miR-30b is involved in various cancers. However, the specific involvement of miR-30b on breast cancer metastasis remains unknown. In the current study, we aimed to investigate the role of miR-30b in the progression and metastasis of breast cancer in vitro. Methods We up-regulated the expression of miR-30b in breast cancer cell lines SKBR3 and MDA-MB-231 by transfecting pCMV-miR-30b vector. CCK8, colony formation, Transwell, and flow cytometry assays were used to examine cell proliferation, migration, invasion and apoptosis, respectively. A dual-luciferase reporter assay was performed to identify the relationship between miR-30b and the target gene. Western blot assay was used to detect related proteins. Results Our data showed that the overexpression of miR-30b significantly inhibited proliferation, migration and invasion abilities in SKBR3 and MDA-MB-231 cells. Meanwhile, overexpression of miR-30b induced cell apoptosis for both SKBR3 and MDA-MB-231 cells by regulating the expression of apoptosis-related proteins (Bcl-2, Bax, active Caspase-3, and Caspase-9). Moreover, miR-30b inhibited the activation of the PI3K/Akt signaling pathway by decreasing the phosphorylation levels of Akt and mTOR. Furthermore, we determined that miR-30b could down-regulate the expression of Derlin-1 in a post-transcriptional manner by employing the dual-luciferase reporter and western blot assays. Further analysis demonstrated that depletion of Derlin-1 inhibited Akt phosphorylation, and Derlin-1 could restore the effect of miR-30b on Akt. In addition, the CCK8 assay showed that Derlin-1 could partly reverse the inhibition of cell proliferation of SKBR3 and MDA-MB-231 cells mediated by miR-30b. Conclusions Our data demonstrated that miR-30b suppresses the progression and metastasis of breast cancer via inhibition of the PI3K/Akt signaling pathway by targeting Derlin-1 in vitro. This suggests that miR-30b might be a novel potent target for breast cancer therapy.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ai-Zhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ju-Feng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Dong Cui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
27
|
Yu JJ, Pi WS, Cao Y, Peng AF, Cao ZY, Liu JM, Huang SH, Liu ZL, Zhang W. Let-7a inhibits osteosarcoma cell growth and lung metastasis by targeting Aurora-B. Cancer Manag Res 2018; 10:6305-6315. [PMID: 30568492 PMCID: PMC6267740 DOI: 10.2147/cmar.s185090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Accumulating studies showed that the expression of microRNAs (miRNAs) was dysregulated in osteosarcoma (OS). In this study, we sought to investigate the effect of let-7a on OS progression and its potential molecular mechanism. Patients and methods Quantitative real-time PCR (qRT-PCR) was performed to evaluate the expression level of let-7a and Aurora-B (AURKB) in OS tissues and cells. The OS cells were treated with let-7a mimic, let7a inhibitor, negative mimic and Lv-AURKB combined with let-7a. The ability of cell proliferation, migration and invasion was measured using Cell Counting Kit-8 (CCK-8) and wound-healing and transwell invasion assays. The protein of AURKB, NF-κβp65, MMP2 and MMP9 was measured by Western blot analysis. Xenograft model was performed to investigate the effects of let-7a on tumor growth and metastasis. The lung metastasis was measured by counting the metastatic node using H&E staining. Results Let-7a expression was significantly underexpressed in OS cell lines and tissues compared with human osteoblast cell lines, hFOB1.19, and adjacent normal bone tissues. Exogenous let-7a inhibited the viability, migratory and invasive ability of OS cells in vitro. In addition, the overexpression of AURKB in OS cells could partly rescue let-7a-mediated tumor inhibition. Also, the overexpression of let-7a inhibited OS cell growth and lung metastasis in vivo. Furthermore, the results showed that let-7a could decrease the expression of NF-κβp65, MMP2 and MMP9 proteins by targeting AURKB in OS cells. Conclusion Let-7a inhibits the malignant phenotype of OS cells by targeting AURKB at least partially. Targeting let-7a and AURKB/NF-κβ may be a novel therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Wen-Sen Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Yuan Cao
- Department of Medical Imaging, The First Clinical Medical School of Nanchang University, Nanchang 330006, People's Republic of China
| | - Ai-Fen Peng
- College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang 330001, People's Republic of China
| | - Zhi-Yuan Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Jia-Ming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Shan-Hu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Zhi-Li Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China,
| |
Collapse
|
28
|
Prognostic Value of MicroRNAs in Esophageal Carcinoma: A Meta-Analysis. Clin Transl Gastroenterol 2018; 9:203. [PMID: 30420592 PMCID: PMC6232177 DOI: 10.1038/s41424-018-0070-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Numerous articles have reported that abnormal expression levels of microRNAs (miRNAs) are related to the survival times of esophageal carcinoma (EC) patients, which contains esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Nevertheless, there has not been a comprehensive meta-analysis to assess the accurate prognostic value of miRNAs in EC. Methods Studies published in English up to April 12, 2018 that evaluated the correlation of the expression levels of miRNAs with overall survival (OS) in EC were identified by online searches in PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews performed by two independent authors. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to estimate the correlation between OS and miRNA expression. HR ≥ 2 was considered cutoff for considering the miRNA as prognostic candidate. Results Forty-four pertinent articles with 22 miRNAs and 4310 EC patients were ultimately included. EC patients with tissue expression levels of high miR-21 or low miR-133a (HR = 2.48, 95% CI = 1.50–4.12), miR-133b (HR = 2.15, 95% CI = 1.27–3.62), miR-138 (HR = 2.27, 95% CI = 1.68–3.08), miR-203 (HR = 2.83, 95% CI = 1.35–5.95), miR-375 and miR-655 (HR = 2.66, 95% CI = 1.16–6.12) had significantly poorer OS (P < 0.05). In addition, EC patients with blood expression levels of high miR-21 (HR = 2.19, 95% CI = 1.31–3.68) and miR-223 had significantly shorter OS (P < 0.05). Conclusions In conclusion, tissue expression levels of miR-21, miR-133a, miR-133b, miR-138, miR-203, miR-375, and miR-655 and blood expression levels of miR-21 and miR-223 demonstrate significant prognostic value. Among them, the expression levels of miR-133a, miR-133b, miR-138, miR-203, and miR-655 in tissue and the expression level of miR-21 in blood are potential prognostic candidates for predicting OS in EC.
Collapse
|
29
|
Zhang Y, Li XJ, He RQ, Wang X, Zhang TT, Qin Y, Zhang R, Deng Y, Wang HL, Luo DZ, Chen G. Upregulation of HOXA1 promotes tumorigenesis and development of non‑small cell lung cancer: A comprehensive investigation based on reverse transcription-quantitative polymerase chain reaction and bioinformatics analysis. Int J Oncol 2018; 53:73-86. [PMID: 29658571 PMCID: PMC5958640 DOI: 10.3892/ijo.2018.4372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Homeobox A1 (HOXA1) serves an oncogenic role in multiple cancer types. However, the role of HOXA1 in non-small cell lung cancer (NSCLC) remains unclear. In the present study, use of reverse transcription-quantitative polymerase chain reaction and the databases of The Cancer Genome Atlas (TCGA), Oncomine, Gene Expression Profiling Interactive Analysis and the Multi Experiment Matrix were combined to assess the expression of HOXA1 and its co-expressed genes in NSCLC. Bioinformatic analyses, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network and protein-protein interaction analyses, were used to investigate the underlying molecular mechanism effected by the co-expressed genes. Additionally, the potential miRNAs targeting HOXA1 were investigated. The results showed that HOXA1 was upregulated in NSCLC. The area under the curve of HOXA1 indicated a moderate diagnostic value of the HOXA1 level in NSCLC. According to GO and KEGG analyses, the co-expressed genes may be involved in 'dGTP metabolic processes', 'network-forming collagen trimers', 'centromeric DNA binding' and 'the p53 signaling pathway'. Three miRNAs (miR-181b-5p, miR-28-5p and miR-181d-5p) targeting HOXA1 were each predicted by 10 algorithms; miR-181b and miR-181d levels were downregulated in LUSC tissues compared with those in normal lung tissues based on data from the TCGA database, and inverse correlations were found between HOXA1 and miR-181b (r=−0.205, P<0.001) and miR-181d (r=−0.106, P=0.020). We speculate that HOXA1 may be the direct target of miR-181b-5p or miR-181d-5p in LUSC, and HOXA1 may serve a significant role in NSCLC by regulating various pathways, particularly the p53 signaling pathway. However, the detailed mechanism should be verified by functional experiments.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Jiao Li
- Department of Positron Emission Tomography-Computed Tomography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology,, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tong-Tong Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yun Deng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Han-Lin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|