1
|
Celestino R, Gama JB, Castro-Rodrigues AF, Barbosa DJ, Rocha H, d’Amico EA, Musacchio A, Carvalho AX, Morais-Cabral JH, Gassmann R. JIP3 interacts with dynein and kinesin-1 to regulate bidirectional organelle transport. J Cell Biol 2022; 221:e202110057. [PMID: 35829703 PMCID: PMC9284427 DOI: 10.1083/jcb.202110057] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 01/16/2023] Open
Abstract
The MAP kinase and motor scaffold JIP3 prevents excess lysosome accumulation in axons of vertebrates and invertebrates. How JIP3's interaction with dynein and kinesin-1 contributes to organelle clearance is unclear. We show that human dynein light intermediate chain (DLIC) binds the N-terminal RH1 domain of JIP3, its paralog JIP4, and the lysosomal adaptor RILP. A point mutation in RH1 abrogates DLIC binding without perturbing the interaction between JIP3's RH1 domain and kinesin heavy chain. Characterization of this separation-of-function mutation in Caenorhabditis elegans shows that JIP3-bound dynein is required for organelle clearance in the anterior process of touch receptor neurons. Unlike JIP3 null mutants, JIP3 that cannot bind DLIC causes prominent accumulation of endo-lysosomal organelles at the neurite tip, which is rescued by a disease-associated point mutation in JIP3's leucine zipper that abrogates kinesin light chain binding. These results highlight that RH1 domains are interaction hubs for cytoskeletal motors and suggest that JIP3-bound dynein and kinesin-1 participate in bidirectional organelle transport.
Collapse
Affiliation(s)
- Ricardo Celestino
- Instituto de Investigação e Inovação em Saúde—i3S, Universidade do Porto, Porto, Portugal
| | - José B. Gama
- Instituto de Investigação e Inovação em Saúde—i3S, Universidade do Porto, Porto, Portugal
| | | | - Daniel J. Barbosa
- Instituto de Investigação e Inovação em Saúde—i3S, Universidade do Porto, Porto, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), Cooperative of Limited Liability (CRL), Gandra, Portugal
| | - Helder Rocha
- Instituto de Investigação e Inovação em Saúde—i3S, Universidade do Porto, Porto, Portugal
| | - Ennio A. d’Amico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde—i3S, Universidade do Porto, Porto, Portugal
| | - João H. Morais-Cabral
- Instituto de Investigação e Inovação em Saúde—i3S, Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde—i3S, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Platzer K, Sticht H, Edwards SL, Allen W, Angione KM, Bonati MT, Brasington C, Cho MT, Demmer LA, Falik-Zaccai T, Gamble CN, Hellenbroich Y, Iascone M, Kok F, Mahida S, Mandel H, Marquardt T, McWalter K, Panis B, Pepler A, Pinz H, Ramos L, Shinde DN, Smith-Hicks C, Stegmann APA, Stöbe P, Stumpel CTRM, Wilson C, Lemke JR, Di Donato N, Miller KG, Jamra R. De Novo Variants in MAPK8IP3 Cause Intellectual Disability with Variable Brain Anomalies. Am J Hum Genet 2019; 104:203-212. [PMID: 30612693 DOI: 10.1016/j.ajhg.2018.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 01/28/2023] Open
Abstract
Using exome sequencing, we have identified de novo variants in MAPK8IP3 in 13 unrelated individuals presenting with an overlapping phenotype of mild to severe intellectual disability. The de novo variants comprise six missense variants, three of which are recurrent, and three truncating variants. Brain anomalies such as perisylvian polymicrogyria, cerebral or cerebellar atrophy, and hypoplasia of the corpus callosum were consistent among individuals harboring recurrent de novo missense variants. MAPK8IP3 has been shown to be involved in the retrograde axonal-transport machinery, but many of its specific functions are yet to be elucidated. Using the CRISPR-Cas9 system to target six conserved amino acid positions in Caenorhabditis elegans, we found that two of the six investigated human alterations led to a significantly elevated density of axonal lysosomes, and five variants were associated with adverse locomotion. Reverse-engineering normalized the observed adverse effects back to wild-type levels. Combining genetic, phenotypic, and functional findings, as well as the significant enrichment of de novo variants in MAPK8IP3 within our total cohort of 27,232 individuals who underwent exome sequencing, we implicate de novo variants in MAPK8IP3 as a cause of a neurodevelopmental disorder with intellectual disability and variable brain anomalies.
Collapse
Affiliation(s)
- Konrad Platzer
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany.
| | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stacey L Edwards
- Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - William Allen
- Department of Genetics, Fullerton Genetics Center, Asheville, NC 28803, USA
| | - Kaitlin M Angione
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maria T Bonati
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Campbell Brasington
- Department of Pediatrics, Clinical Genetics, Levine Children's Hospital at Carolina Healthcare System, Charlotte, NC 28203, USA
| | | | - Laurie A Demmer
- Department of Pediatrics, Clinical Genetics, Levine Children's Hospital at Carolina Healthcare System, Charlotte, NC 28203, USA
| | - Tzipora Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya 22100, Israel; The Azrieli School of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Candace N Gamble
- Department of Pediatrics, University of Texas Health Medical School, Houston, TX 77030, USA
| | - Yorck Hellenbroich
- Institute of Human Genetics, University of Lübeck, Lübeck 23562, Germany
| | - Maria Iascone
- Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo 24127, Italy
| | - Fernando Kok
- Mendelics Genomic Analysis, São Paulo 04013-000, Brazil
| | - Sonal Mahida
- Department of Neurology, Kennedy Krieger Institute, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hanna Mandel
- Institute of Human Genetics, Galilee Medical Center, Nahariya 22100, Israel
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital Münster, Münster 48149, Germany
| | | | - Bianca Panis
- Department of Pediatrics, Zuyderland Medical Center, Heerlen and Sittard 6419, the Netherlands
| | - Alexander Pepler
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen 72076, Germany
| | - Hailey Pinz
- Division of Medical Genetics, Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Luiza Ramos
- Mendelics Genomic Analysis, São Paulo 04013-000, Brazil
| | - Deepali N Shinde
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Constance Smith-Hicks
- Department of Neurology, Kennedy Krieger Institute, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6229, the Netherlands
| | - Petra Stöbe
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen 72076, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6229, the Netherlands
| | - Carolyn Wilson
- Department of Genetics, Fullerton Genetics Center, Asheville, NC 28803, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany
| | - Nataliya Di Donato
- Institute for Clinical Genetics, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden 01307, Germany
| | - Kenneth G Miller
- Genetic Models of Disease Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rami Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany
| |
Collapse
|
3
|
JIP3 localises to exocytic vesicles and focal adhesions in the growth cones of differentiated PC12 cells. Mol Cell Biochem 2017; 444:1-13. [PMID: 29159770 PMCID: PMC6002436 DOI: 10.1007/s11010-017-3222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023]
Abstract
The JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons. We have used immunofluorescence microscopy and biochemical fractionation to investigate the subcellular distribution of JIP3 in relation to JNK and to vesicular and organelle markers in rat pheochromocytoma cells (PC12) differentiating in response to nerve growth factor. In differentiated PC12 cells, JIP3 was seen to accumulate in growth cones at the tips of developing neurites where it co-localised with both JNK and the JNK substrate paxillin. Cellular fractionation of PC12 cells showed that JIP3 was associated with a subpopulation of vesicles in the microsomal fraction, distinct from synaptic vesicles, likely to be an anterograde-directed exocytic vesicle pool. In differentiated PC12 cells, JIP3 did not appear to associate with retrograde endosomal vesicles thought to be involved in signalling axonal injury. Together, these observations indicate that JIP3 may be involved in transporting vesicular cargoes to the growth cones of PC12 cells, possibly targeting JNK to its substrate paxillin, and thus facilitating neurite outgrowth.
Collapse
|