1
|
Patel H, Kukol A. Harnessing viral internal proteins to combat flu and beyond. Virology 2025; 604:110414. [PMID: 39881469 DOI: 10.1016/j.virol.2025.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
This mini-review examines the strategy of combining viral protein sequence conservation with drug-binding potential to identify novel antiviral targets, focusing on internal proteins of influenza A and other RNA viruses. The importance of combating viral genetic variability and reducing the likelihood of resistance development is emphasised in the context of sequence redundancy in viral datasets. It covers recent structural and functional updates, as well as drug targeting efforts for three internal influenza A viral proteins: Basic Polymerase 2, Nuclear Export Protein, and Nucleoprotein. The review discusses new insights into protein interactions, potential inhibitors, and recent drug discovery efforts. Similar approaches beyond influenza including Hepatitis E, SARS-CoV-2, Dengue, and the HIV-1 virus are also covered briefly.
Collapse
Affiliation(s)
- Hershna Patel
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| | - Andreas Kukol
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
2
|
Lin YF, Lai HC, Lin CS, Hung PY, Kan JY, Chiu SW, Lu CH, Petrova SF, Baltina L, Lin CW. Discovery of Potent Dengue Virus NS2B-NS3 Protease Inhibitors Among Glycyrrhizic Acid Conjugates with Amino Acids and Dipeptides Esters. Viruses 2024; 16:1926. [PMID: 39772233 PMCID: PMC11680386 DOI: 10.3390/v16121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025] Open
Abstract
This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds 11 and 17 exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153. Based on the molecular docking data, conjugates 11 with L-glutamic acid dimethyl ester, 17 with β-alanine ethyl ester, and 19 with aminoethantic acid methyl ester were further demonstrated as potent inhibitors of DENV-2 NS3 protease, with IC50 values below 1 μM, using NS3-mediated cleavage assay. Compound 11 was the most potent, with EC50 values of 0.034 μM for infectivity, 0.042 μM for virus yield, and a selective index over 2000, aligning with its strong NS3 protease inhibition. Compound 17 exhibited better NS3 protease inhibition than compound 19 but showed weaker effects on infectivity and virus yield. While all compounds strongly inhibited viral infectivity post-entry, compound 19 also blocked viral entry. This study provided valuable insights into the interactions between active GL derivatives and DENV-2 NS2B-NS3 protease, offering a comprehensive framework for identifying lead compounds for further drug optimization and design as NS2B-NS3 protease inhibitors against DENV.
Collapse
Affiliation(s)
- Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan;
- School of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, Taichung 433401, Taiwan;
| | - Ping-Yi Hung
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (P.-Y.H.); (J.-Y.K.)
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (P.-Y.H.); (J.-Y.K.)
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404328, Taiwan
| | - Shih-Wen Chiu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (S.-W.C.); (C.-H.L.)
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (S.-W.C.); (C.-H.L.)
| | - Svetlana F. Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, Ufa 450054, Russia;
| | - Lidia Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of RAS, Ufa 450054, Russia;
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404328, Taiwan; (P.-Y.H.); (J.-Y.K.)
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
3
|
Cordero AMF, Gonzales AA. Using Multiscale Molecular Modeling to Analyze Possible NS2b-NS3 Protease Inhibitors from Philippine Medicinal Plants. Curr Issues Mol Biol 2024; 46:7592-7618. [PMID: 39057092 PMCID: PMC11275823 DOI: 10.3390/cimb46070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Within the field of Philippine folkloric medicine, the utilization of indigenous plants like Euphorbia hirta (tawa-tawa), Carica papaya (papaya), and Psidium guajava (guava) as potential dengue remedies has gained attention. Yet, limited research exists on their comprehensive effects, particularly their anti-dengue activity. This study screened 2944 phytochemicals from various Philippine plants for anti-dengue activity. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling provided 1265 compounds demonstrating pharmacokinetic profiles suitable for human use. Molecular docking targeting the dengue virus NS2b-NS3 protease's catalytic triad (Asp 75, Ser 135, and His 51) identified ten ligands with higher docking scores than reference compounds idelalisib and nintedanib. Molecular dynamics simulations confirmed the stability of eight of these ligand-protease complexes. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) analysis highlighted six ligands, including veramiline (-80.682 kJ/mol), cyclobranol (-70.943 kJ/mol), chlorogenin (-63.279 kJ/mol), 25beta-Hydroxyverazine (-61.951 kJ/mol), etiolin (-59.923 kJ/mol), and ecliptalbine (-56.932 kJ/mol) with favorable binding energies, high oral bioavailability, and drug-like properties. This integration of traditional medical knowledge with advanced computational drug discovery methods paves new pathways for the development of treatments for dengue.
Collapse
Affiliation(s)
| | - Arthur A. Gonzales
- Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
4
|
Serafim MSM, Kronenberger T, Rocha REO, Rosa ADRA, Mello TLG, Poso A, Ferreira RS, Abrahão JS, Kroon EG, Mota BEF, Maltarollo VG. Aminopyrimidine Derivatives as Multiflavivirus Antiviral Compounds Identified from a Consensus Virtual Screening Approach. J Chem Inf Model 2024; 64:393-411. [PMID: 38194508 DOI: 10.1021/acs.jcim.3c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Around three billion people are at risk of infection by the dengue virus (DENV) and potentially other flaviviruses. Worldwide outbreaks of DENV, Zika virus (ZIKV), and yellow fever virus (YFV), the lack of antiviral drugs, and limitations on vaccine usage emphasize the need for novel antiviral research. Here, we propose a consensus virtual screening approach to discover potential protease inhibitors (NS3pro) against different flavivirus. We employed an in silico combination of a hologram quantitative structure-activity relationship (HQSAR) model and molecular docking on characterized binding sites followed by molecular dynamics (MD) simulations, which filtered a data set of 7.6 million compounds to 2,775 hits. Lastly, docking and MD simulations selected six final potential NS3pro inhibitors with stable interactions along the simulations. Five compounds had their antiviral activity confirmed against ZIKV, YFV, DENV-2, and DENV-3 (ranging from 4.21 ± 0.14 to 37.51 ± 0.8 μM), displaying aggregator characteristics for enzymatic inhibition against ZIKV NS3pro (ranging from 28 ± 7 to 70 ± 7 μM). Taken together, the compounds identified in this approach may contribute to the design of promising candidates to treat different flavivirus infections.
Collapse
Affiliation(s)
- Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Rafael Eduardo Oliveira Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Amanda Del Rio Abreu Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Thaysa Lara Gonçalves Mello
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Tübingen 70211, Germany
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Jonatas Santos Abrahão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Bruno Eduardo Fernandes Mota
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
5
|
Mufti IU, Sufyan M, Shahid I, Alzahrani AR, Shahzad N, M Alanazi IM, Ibrahim IAA, Rehman S. Computer-aided identification of dengue virus NS2B/NS3 protease inhibitors: an integrated molecular modelling approach for screening of phytochemicals. J Biomol Struct Dyn 2023; 42:11052-11063. [PMID: 37747078 DOI: 10.1080/07391102.2023.2259496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Globally, dengue (DENV) fever has appeared as the most widespread vector-borne disease, affecting more than 100 million individuals annually. No approved anti-DENV therapy or preventive vaccine is available yet. DENV NS3 protein is associated with protease activity and is essential for viral replication process within the host cell. NS2B is linked with NS3 protein as a cofactor. Hence, NS3/NS2B is a potential druggable target for developing inhibitors against dengue virus. In the present study, a dataset of Beta vulgaris L.-based natural compounds was developed. Virtual ligand screening of 30 phytochemicals was carried out to find novel inhibitors against the NS2B/NS3 protein. Spatial affinity, drug-likeness, and binding behaviors of selected phytochemicals were analyzed. Post-simulation analysis, including Principal Component Analysis (PCA), MMGBSA, and Co-relation analysis, was also performed to provide deep insight for elucidating protein-ligand complexes. This computer-aided screening scrutinized four potent phytochemicals, including betavulgaroside II, vitexin xyloside, epicatechin, and isovitexin2-O-xyloside inhibitors exhibiting optimal binding with viral NS3/NS2B protein. Our study brings novel scaffolds against DENV NS2B/NS3 of serotype-2 to act as lead molecules for further biological optimization. In future, this study will prompt the exploration and development of adjuvant anti-DENV therapy based on natural compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Isra Umbreen Mufti
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Ibrahim Mufadhi M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, AlAbidiyah, Makkah, Saudi Arabia
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
6
|
Dos Santos Nascimento IJ, da Silva Rodrigues ÉE, da Silva MF, de Araújo-Júnior JX, de Moura RO. Advances in Computational Methods to Discover New NS2B-NS3 Inhibitors Useful Against Dengue and Zika Viruses. Curr Top Med Chem 2022; 22:2435-2462. [PMID: 36415099 DOI: 10.2174/1568026623666221122121330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
The Flaviviridae virus family consists of the genera Hepacivirus, Pestivirus, and Flavivirus, with approximately 70 viral types that use arthropods as vectors. Among these diseases, dengue (DENV) and zika virus (ZIKV) serotypes stand out, responsible for thousands of deaths worldwide. Due to the significant increase in cases, the World Health Organization (WHO) declared DENV a potential threat for 2019 due to being transmitted by infected travelers. Furthermore, ZIKV also has a high rate of transmissibility, highlighted in the outbreak in 2015, generating consequences such as Guillain-Barré syndrome and microcephaly. According to clinical outcomes, those infected with DENV can be asymptomatic, and in other cases, it can be lethal. On the other hand, ZIKV has severe neurological symptoms in newborn babies and adults. More serious symptoms include microcephaly, brain calcifications, intrauterine growth restriction, and fetal death. Despite these worrying data, no drug or vaccine is approved to treat these diseases. In the drug discovery process, one of the targets explored against these diseases is the NS2B-NS3 complex, which presents the catalytic triad His51, Asp75, and Ser135, with the function of cleaving polyproteins, with specificity for basic amino acid residues, Lys- Arg, Arg-Arg, Arg-Lys or Gln-Arg. Since NS3 is highly conserved in all DENV serotypes and plays a vital role in viral replication, this complex is an excellent drug target. In recent years, computer-aided drug discovery (CADD) is increasingly essential in drug discovery campaigns, making the process faster and more cost-effective, mainly explained by discovering new drugs against DENV and ZIKV. Finally, the main advances in computational methods applied to discover new compounds against these diseases will be presented here. In fact, molecular dynamics simulations and virtual screening is the most explored approach, providing several hit and lead compounds that can be used in further optimizations. In addition, fragment-based drug design and quantum chemistry/molecular mechanics (QM/MM) provides new insights for developing anti-DENV/ZIKV drugs. We hope that this review offers further helpful information for researchers worldwide and stimulates the use of computational methods to find a promising drug for treating DENV and ZIKV.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil.,Department of Pharmacy, Cesmac University Center, Maceió, Brazil.,Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| | | | - Manuele Figueiredo da Silva
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, Brazil
| |
Collapse
|
7
|
CRISPR-Cas13a Cleavage of Dengue Virus NS3 Gene Efficiently Inhibits Viral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1460-1469. [PMID: 32160714 PMCID: PMC7056623 DOI: 10.1016/j.omtn.2020.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
The CRISPR-Cas9 system has been applied to DNA editing with precision in eukaryotic and prokaryotic systems, but it is unable to edit RNA directly. A recently developed CRISPR-Cas13a system has been shown to be capable of effectively knocking down RNA expression in mammalian and plant cells. In this study, we employ the CRISPR-Cas13a system to achieve reprogrammable inactivation of dengue virus in mammalian cells. Quantitative reverse transcription PCR (qRT-PCR), fluorescence-activated cell sorting (FACS), and plaque assays showed that CRISPR RNA (crRNA) targeting the NS3 region led to the greatest viral inhibition among 10 crRNAs targeting different regions along the dengue viral genomic RNA. Deletions and insertions had also been found adjacent to the NS3 region after NS3-crRNA/Cas13a complex transfection. Our results demonstrate that the CRISPR-Cas13a system is a novel and effective technology to inhibit dengue viral replication, suggesting that such a programmable method may be further developed into a novel therapeutic strategy for dengue and other RNA viruses.
Collapse
|
8
|
Development of a NS2B/NS3 protease inhibition assay using AlphaScreen ® beads for screening of anti-dengue activities. Heliyon 2018; 4:e01023. [PMID: 30560214 PMCID: PMC6289942 DOI: 10.1016/j.heliyon.2018.e01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background Dengue infection is an endemic infectious disease and it can lead to dengue fever, dengue hemorrhagic fever, and/or dengue shock syndromes. Dengue NS2B/NS3 protease complex is essential for viral replication and is a primary target for anti-dengue drug development. In this study, a NS2B/NS3 protease inhibition assay was developed using AlphaScreen® beads and was used to screen compounds for their protease inhibition activities. Methods The assay system utilized a known NS2B/NS3 peptide substrate, a recombinant of NS2B/NS3 protease with proprietary StrepTactin® donor and nickel chelate acceptor beads in 384-well format. Results The optimized assay to screen for NS2B/NS3 protease inhibitors was demonstrated to be potentially useful with reasonable zʹ factor, coefficient variance and signal to background ratio. However, screening of synthesized thioguanine derivatives using the optimized AlphaScreen® assay revealed weak NS2B/NS3 inhibition activities. Conclusion The AlphaScreen® assay to screen for NS2B/NS3 protease inhibitors is potentially applicable for high throughput screening.
Collapse
|
9
|
Leonel CA, Lima WG, dos Santos M, Ferraz AC, Taranto AG, de Magalhães JC, dos Santos LL, Ferreira JMS. Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds. Arch Virol 2017; 163:575-586. [DOI: 10.1007/s00705-017-3641-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
|
10
|
Marcello A, Pantano S. Interdisciplinary approaches to the study of flavivirus. Biochem Biophys Res Commun 2017; 492:531-532. [PMID: 28851652 DOI: 10.1016/j.bbrc.2017.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Alessandro Marcello
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| |
Collapse
|