1
|
Lv J, Chen J, Song Y, Yao Y, Wu G, Yuan D, Gu X, Li X, Xu C, Zhou B, Ye M, Lv T, Wang D, Song Y. Co-Delivery of VEGF siRNA and THPP via Metal-Organic Framework Reverses Cisplatin-Resistant Non-Small Cell Lung Cancer and Inhibits Metastasis through a MUC4 Regulating Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56910-56925. [PMID: 39397733 DOI: 10.1021/acsami.4c15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Cisplatin resistance significantly impacts the antitumor efficacy of cisplatin chemotherapy and contributes to poor prognosis, including metastasis. In this study, we present the utilization of metal-organic framework (MOF) nanoparticles as the therapeutic component and drug loading scaffold for implementing a ternary combination therapeutic strategy to combat cisplatin-resistant lung cancer and metastasis. Specifically, by engineering MOFs (Cis@MOF-siVEGF) through the self-assembly of THPP as photosensitizer for photodynamic therapy (PDT), along with the incorporation of cisplatin (DDP) and VEGF siRNA (siVEGF), we propose the leverage of photodynamic-induced oxidative damage and gene silencing of the angiogenic factor to reverse cisplatin resistance and sensitize therapeutic potency. Our findings demonstrated that the chemo/photodynamic/antiangiogenic triple combination therapy via Cis@MOF-siVEGF under irradiation effectively inhibits cisplatin-resistant tumor growth and induces abscopal effects. Importantly, molecular mechanistic exploration suggested that MUC4 exerted regulatory effects on governing cancer metastasis, thus representing a potential immunotherapeutic target for cancer intervention. Overall, our study creates a MOFs-based multicomponent delivery platform for complementary therapeutic modules with synergistically enhanced antitumor efficacy and sheds light on potential regulatory mechanisms on cisplatin-resistance cancers.
Collapse
Affiliation(s)
- Jiawen Lv
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Jiayan Chen
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Yueyue Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, People's Republic of China
| | - Yanwen Yao
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Guannan Wu
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Xiaoling Gu
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Xing Li
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, People's Republic of China
| | - Dong Wang
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, People's Republic of China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, People's Republic of China
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210002, People's Republic of China
| |
Collapse
|
2
|
Li N, Cui S, Yang A, Xiao B, Cao Y, Yang X, Lin C. Sequence-dependent effects of hematoporphyrin derivatives (HPD) photodynamic therapy and cisplatin on lung adenocarcinoma cells. Photodiagnosis Photodyn Ther 2024; 47:104102. [PMID: 38679153 DOI: 10.1016/j.pdpdt.2024.104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Hematoporphyrin derivatives (HPD)-Photodynamic therapy (PDT) in combination with cisplatin (DDP) is an effective anticancer strategy. However, whether the order of combination affects efficacy has not been studied. METHODS The human lung adenocarcinoma (LUAD) A549 cells were used as the study subjects. After A549 cells were treated with a single medication (PDT/DDP) or a sequential combination (PDT + DDP / DDP + PDT), the cell viability was assayed using the cell counting kit-8 method. Hoechst staining, Annexin-V/propidium iodide (PI) double staining, western blotting, and a real-time quantitative polymerase chain reaction (RT-qPCR) were performed to examine the mechanisms behind the combined effects. RESULTS A synergistic impact between HPD-PDT and DDP was found. The cell viability in the PDT+DDP group was significantly lower than in the DDP+PDT group. A significant apoptotic profile and a high apoptotic rate were seen in the PDT + DDP group. The western blot showed that the expression levels of Bcl2-associated x(Bax) and cleaved-poly ADP-ribose polymerase (PARP) increased, and those of B-cell lymphoma-2 (Bcl-2) and Caspase-9 decreased in the PDT + DDP group. At the same time, the RT-qPCR revealed the upregulation of Bax and PARP mRNA and the downregulation of Bcl-2 and Caspase-9 mRNA. CONCLUSION The order of the combination therapy (PDT + DDP / DDP + PDT) was important. The HPD-PDT followed by DDP significantly inhibited LUAD cell viability, which may be related to the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Nana Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shichao Cui
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Aizhen Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Baohong Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yiwei Cao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaohui Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cunzhi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
3
|
Carobeli LR, Santos ABC, Martins LBM, Damke E, Consolaro MEL. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: a systematic review. Expert Rev Anticancer Ther 2024; 24:263-282. [PMID: 38549400 DOI: 10.1080/14737140.2024.2337259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Despite the evidence that photodynamic therapy (PDT) associated with chemotherapy presents great potential to overcome the limitations of monotherapy, little is known about the current status of this combination against cervical cancer. This systematic review aimed to address the currently available advances in combining PDT and chemotherapy in different research models and clinical trials of cervical cancer. METHODS We conducted a systematic review based on PRISMA Statement and Open Science Framework review protocol using PubMed, Web of Science, Embase, Scopus, LILACS, and Cochrane databases. We selected original articles focusing on 'Uterine Cervical Neoplasms' and 'Photochemotherapy and Chemotherapy' published in the last 10 years. The risk of bias in the studies was assessed using the CONSORT and SYRCLE tools. RESULTS Twenty-three original articles were included, focusing on HeLa cells, derived from endocervical adenocarcinoma and on combinations of several chemotherapeutics. Most of the combinations used modern drug delivery systems for improved simultaneous delivery and presented promising results with increased cytotoxicity compared to monotherapy. CONCLUSION Despite the scarcity of animal studies and the absence of clinical studies, the combination of chemotherapy with PDT presents a potential option for cervical cancer therapy requiring additional studies. OSF REGISTRATION https://doi.org/10.17605/OSF.IO/WPHN5 [Figure: see text].
Collapse
Affiliation(s)
- Lucimara Rodrigues Carobeli
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Beatriz Camillo Santos
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
4
|
Isaac-Lam MF. Chlorin Conjugates in Photodynamic Chemotherapy for Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2024; 17:576. [PMID: 38794146 PMCID: PMC11124301 DOI: 10.3390/ph17050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women and the number of new cases in the US is still increasing each year. Triple-negative breast cancer (TNBC), which comprises 15-20% of all breast cancer, is a heterogeneous disease and is considered the most aggressive type of breast cancer due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expressions for treatments. Traditional chemotherapy is the standard protocol for the treatment of TNBC. Toxicity and multidrug resistance are major drawbacks to chemotherapy. The lack of molecular targets and poor prognosis for TNBC prompts an urgent need to discover novel therapeutic strategies to improve clinical outcomes and quality of life for patients. Photodynamic therapy (PDT) or light treatment is a binary anti-cancer procedure that uses a photosensitizer (PS) that, upon light activation, produces cytotoxic oxygen species, destroying tumor cells. PDT is minimally invasive and can be repeated a few times without accumulating significant toxicity in the surrounding tissues. The primary goal of this study was to investigate in vitro photodynamic chemotherapy as a ternary combination therapy using our synthesized photosensitizers (chlorin-vitamin conjugates and their corresponding indium complexes) co-treated with known chemotherapeutic agents (taxol, doxorubicin, cisplatin, fluorouracil, or methotrexate) in the presence of light and determine the optimum conditions as a pre-clinical study of an enhanced tumoricidal effect against TNBC. Our results indicated that the best combination for an effective chemophotodynamic effect involves a ternary treatment of the indium complex of the chlorin-lipoic acid conjugate (InCLA) co-treated with taxol, which exhibited strong synergism at the nanomolar concentration when combined in the presence of visible light irradiation. Other ternary combinations containing taxol with a synergistic anti-tumor effect against TNBC include chlorin-pantothenic acid (CPA) and chlorin-biotin (CBTN) conjugates. Several other ternary combinations containing InCLA, CBTN, and CPA with either cisplatin, fluorouracil, or methotrexate were identified to generate a synergistic or additive effect. The light dosage remained constant, but the dosages of photosensitizers and chemotherapy drugs were varied to obtain the lowest possible concentration for the desired effect. The synergistic, additive or antagonistic effects of the drug combinations were determined based on the Chou-Talalay method, with InCLA-taxol having the lowest combination index (CI) of 0.25. Fluorescence and transmission electron microscopy (TEM) images provided evidence of apoptosis as the preferred mode of cell death. Our study demonstrated the combination of PDT and chemotherapy as a potential treatment option for TNBC patients.
Collapse
Affiliation(s)
- Meden F Isaac-Lam
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN 46391, USA
| |
Collapse
|
5
|
Olszowy M, Nowak-Perlak M, Woźniak M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment. Pharmaceutics 2023; 15:1712. [PMID: 37376160 DOI: 10.3390/pharmaceutics15061712] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Photodynamic diagnostics (PDD) and photodynamic therapy (PDT) are well-established medical technologies used for the diagnosis and treatment of malignant neoplasms. They rely on the use of photosensitizers, light and oxygen to visualize or eliminate cancer cells. This review demonstrates the recent advancements in these modalities with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors, liposomes and micelles. Additionally, this literature review explores the combination of PDT with radiotherapy, chemotherapy, immunotherapy, and surgery for treating various neoplasms. The article also focuses on the latest achievements in PDD and PDT enhancements, which seem to be very promising in the field of oncology.
Collapse
Affiliation(s)
- Marta Olszowy
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
6
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
7
|
Broadwater D, Medeiros HCD, Lunt RR, Lunt SY. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu Rev Biomed Eng 2021; 23:29-60. [PMID: 34255992 DOI: 10.1146/annurev-bioeng-122019-115833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; , .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; ,
| |
Collapse
|
8
|
Wufuer R, Ma HX, Luo MY, Xu KY, Kang L. Downregulation of Rac1/PAK1/LIMK1/cofilin signaling pathway in colon cancer SW620 cells treated with Chlorin e6 photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 33:102143. [PMID: 33307230 DOI: 10.1016/j.pdpdt.2020.102143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer is one of the most common gastrointestinal malignancies. Photodynamic therapy (PDT) is a novel and non-invasive treatment for tumors as PDT features small trauma, good applicability, andaccurate targeting. PDT may also be a potential treatment for colon cancer as itmay may induce suppressive effects on metastatic potential.. However, the molecular mechanism of the Chlorin e6 Photodynamic therapy (Ce6-PDT) inhibiting the migration of human colon cancer SW620 cells remains unclear. METHODS Scratch wound healing assay, scanning electron microscope, MTT, immunofluorescence and laser confocal technique were used to investigate the suppressive effects of Ce6-PDT on the SW620 cells migration, pseudopodia, viability and the actin cytoskeleton. The effect of Ce6-PDT on actin-Filaments and signaling molecules of the Rac1/PAK1/LIMK1/cofilin signaling pathway in SW620 cells were examined by western blot analysis. RNA interference (RNAi) technology was used to establish siRNA-Rac1/SW620 cells. The combined effects of Ce6-PDT and RNAi on colon cancer SW620 cells was investigated by the same technology and methods mentioned above to clarify the signal transduction effect of Rac1/PAK1/LIMK1/cofilin signaling pathway in Ce6-PDT caused inhibition of SW620 cell migration. RESULTS The healing and migration rate of the SW620 cells was significantly reduced and the cell pseudopodia were reduced or disappeared by Ce6-PDT. The Immunofluorescence and western blot analysis results showed that Ce6-PDT destroy microfilament's original structure and significantly downregulated F-actin protein expression. The Rac1/PAK1/LIMK1/cofilin signaling pathway was downregulated by Ce6-PDT. Furthermore, the RNAi significantly strengthened the effect of Ce6-PDT on colon cancer SW620 cells migration. CONCLUSIONS Actin cytoskeleton and protrusions of SW620 cells correlate with its migration ability. Ce6-PDT suppresses SW620 cells migration by downregulating the Rac1/PAK1/LIMK1/cofilin signaling pathway, and its suppressive effect was enhanced by knocking down Rac1 gene expression.
Collapse
Affiliation(s)
- Reziwan Wufuer
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Hai-Xiu Ma
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Meng-Yu Luo
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Kai-Yue Xu
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China
| | - Ling Kang
- School of Public Health, Xinjiang Medical University, 393 Xinyi Road, Urumqi, Xinjiang Uygur Autonomous Region, 10760, China.
| |
Collapse
|
9
|
Senapathy GJ, George BP, Abrahamse H. Enhancement of Phthalocyanine Mediated Photodynamic Therapy by Catechin on Lung Cancer Cells. Molecules 2020; 25:molecules25214874. [PMID: 33105655 PMCID: PMC7659931 DOI: 10.3390/molecules25214874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/02/2022] Open
Abstract
Worldwide, lung cancer remains one of the leading cancers with increasing mortality rates. Though chemotherapy for lung cancer is effective, it is always accompanied by unavoidable and grave side effects. Photodynamic therapy (PDT), using novel photosensitizers, is an advanced treatment method with relatively few side effects. Plant products are emerging as potent photosensitizers (PSs). The dose-dependent effect of Catechin (CA) (20–100 µM) on cellular morphological changes, cell viability, cytotoxicity, proliferation, DNA damage and apoptosis were studied on A549 adenocarcinoma alveolar basal epithelial cells. The effect of CA, along with Zinc phthalocyanine PS at 680 nm and 5 J/cm2 fluency was also studied. As the doses of CA increased, the results showed a pattern of increased cytotoxicity, accompanied by decreased cell viability and proliferation in A549 cells. Also, at 52 µM (IC50), CA in combination with PS significantly increased the cytotoxicity, DNA damage, and apoptosis, as compared to control and PS alone, treated cells in PDT experiments. These findings leave a possible thread that CA can be used in the application of phyto-photodynamic therapy of cancer in future.
Collapse
|
10
|
Baglo Y, Sorrin AJ, Liang BJ, Huang HC. Harnessing the Potential Synergistic Interplay Between Photosensitizer Dark Toxicity and Chemotherapy. Photochem Photobiol 2020; 96:636-645. [PMID: 31856423 DOI: 10.1111/php.13196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
The combination of photodynamic therapy and taxol- or platinum-based chemotherapy (photochemotherapy) is an effective and promising cancer treatment. While the mechanisms of action of photochemotherapy are actively studied, relatively little is known about the cytotoxicity and molecular alterations induced by the combination of chemotherapy and photosensitizers without light activation in cancer cells. This study investigates the interplay between the photosensitizer benzoporphyrin derivative (BPD) without light activation and cisplatin or paclitaxel in two glioblastoma lines, U87 and U251. The combination effect of BPD and cisplatin in U87 cells is slightly synergistic (combination index, CI = 0.93), showing 1.8- to 2.6-fold lower half-maximal inhibitory concentrations (IC50 ) compared to those of individual drugs. In contrast, combining BPD and paclitaxel is slightly antagonistic (CI = 1.14) in U87 cells. In U251 cells, the combinations of BPD and cisplatin or paclitaxel are both antagonistic (CI = 1.24 and 1.34, respectively). Western blotting was performed to investigate changes in the expression levels of YAP, TAZ, Bcl-2 and EGFR in U87 and U251 cells treated with BPD, cisplatin and paclitaxel, both as monotherapies and in combination. Our study provides insights into the molecular alterations in two glioma lines caused by each monotherapy and the combinations, in order to inform the design of effective treatments.
Collapse
Affiliation(s)
- Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Aaron J Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M, Fontana CR. Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review. AAPS PharmSciTech 2019; 20:253. [PMID: 31309346 DOI: 10.1208/s12249-019-1407-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
Drug delivery systems (DDS) can be designed to enrich the pharmacological and therapeutic properties of several drugs. Many of the initial obstacles that impeded the clinical applications of conventional DDS have been overcome with nanotechnology-based DDS, especially those formed by chitosan (CS). CS is a linear polysaccharide obtained by the deacetylation of chitin, which has potential properties such as biocompatibility, hydrophilicity, biodegradability, non-toxicity, high bioavailability, simplicity of modification, aqueous solubility, and excellent chemical resistance. Furthermore, CS can prepare several DDS as films, gels, nanoparticles, and microparticles to improve delivery of drugs, such as photosensitizers (PS). Thus, CS-based DDS are broadly investigated for photodynamic therapy (PDT) of cancer and fungal and bacterial diseases. In PDT, a PS is activated by light of a specific wavelength, which provokes selective damage to the target tissue and its surrounding vasculature, but most PS have low water solubility and cutaneous photosensitivity impairing the clinical use of PDT. Based on this, the application of nanotechnology using chitosan-based DDS in PDT may offer great possibilities in the treatment of diseases. Therefore, this review presents numerous applications of chitosan-based DDS in order to improve the PDT for cancer and fungal and bacterial diseases.
Collapse
|
12
|
Xue K, Wang YN, Zhao X, Zhang HX, Yu D, Jin CS. Synergistic effect of meta-tetra(hydroxyphenyl)chlorin-based photodynamic therapy followed by cisplatin on malignant Hep-2 cells. Onco Targets Ther 2019; 12:5525-5536. [PMID: 31371990 PMCID: PMC6636612 DOI: 10.2147/ott.s198422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/12/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Tumor drug resistance limits the response to chemotherapy. Interestingly, sequential combination therapy enhances the anticancer efficacy of drugs like cisplatin (CDDP) via synergistic effects. We assayed the synergistic effects of combined photodynamic therapy programmed death receptor-ligand 1 (PDT) and chemotherapy in malignant Hep-2 cells. Methods In the cultured Hep-2 cells, meta-tetra(hydroxyphenyl)chlorin (m-THPC) and CDDP were administered separately or in combination. The cellular viability and apoptosis were assessed, accompanied by measurement of the expression of Bax, Bcl-2, ATG-7, and LC3 (LC3-I and LC3-II). Additionally, nuclear chromatin changes, drug retention, and PD-L1 expression were further investigated following different treatments. Results The sequential treatment significantly diminished cell viability and induced cell apoptosis, in consistency with the usage of single therapeutic strategies, as reflected by an increase in Bax expression and decrease of Bcl-2 expression. Moreover, ATG-7 and LC3-II/LC3-I ratio were reduced after administration of the sequential treatment. Synergetic effect of nuclear chromatin configuration, negative effects of cellular drug retention, and a decrease in PD-L1 expression were observed following the sequential treatment. Conclusion The application of sequential treatment of PDT in combination with chemotherapy offers a promising therapeutic option for cancer treatment, by regulating the PD-L1 expression, autophagy, and non-mitochondrial pathways.
Collapse
Affiliation(s)
- Kai Xue
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yi-Nan Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xue Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Hong-Xin Zhang
- Changchun Institute of Optics, Fine Mechanics & Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chun-Shun Jin
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
13
|
Evaluation for Synergistic Effects by Combinations of Photodynamic Therapy (PDT) with Temoporfin (mTHPC) and Pt(II) Complexes Carboplatin, Cisplatin or Oxaliplatin in a Set of Five Human Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19103183. [PMID: 30332729 PMCID: PMC6214074 DOI: 10.3390/ijms19103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
The platinum(II) complexes carboplatin (CBDCA), cisplatin (CDDP) and oxaliplatin (1-OHP) are used as anticancer drugs in a large number of tumour chemotherapy regimens. Many attempts have been made to combine Pt(II)-based chemotherapy with alternative treatment strategies. One such alternative anticancer approach is known as photodynamic therapy (PDT), where a non-toxic photosensitizer (PS) produces oxidative stress via the formation of reactive oxygen species (ROS) after local illumination of the affected tissue. A very promising PS is 5,10,15,20-tetra(m-hydroxyphenyl)chlorin (mTHPC, Temoporfin), which is approved for the treatment of head and neck cancer in Europe. In the present study, a combination of mTHPC-mediated PDT and either CBDCA, CDDP, or 1-OHP was applied to five human cancer cell lines from different tumour origins. Cytotoxicity was determined by the MTT assay and synergistic effects on cytotoxicity were evaluated by calculation of Combination Indices (CI). Synergy was identified in some of the combinations, for example, with 1-OHP in three of the tested cell lines but antagonism was also observed for a number of combinations in certain cell lines. In cases of synergy, elevated ROS levels were observed after combination but apoptosis induction was not necessarily increased compared to a treatment with a single compound. Cell cycle analysis revealed a formation of apoptotic subG1 populations and S phase as well as G2/M phase arrests after combination. In conclusion, pre-treatment with mTHPC-PDT has the potential to sensitize some types of tumour cells towards Pt(II) complexes, in particular 1-OHP but synergy is highly dependent on the type of cancer.
Collapse
|