1
|
Saeki Y, Hosoi A, Nishioka M, Fukuda J, Sasaki Y, Yajima S, Ito S. Involvement of G-protein alpha subunit in soybean cyst nematode chemotaxis. Biochem Biophys Res Commun 2024; 735:150830. [PMID: 39423572 DOI: 10.1016/j.bbrc.2024.150830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a significant agricultural pest that causes extensive damage to soybean production worldwide. Second-stage juveniles (J2s) of the SCN migrate through the soil and infest the roots of host plants in response to certain chemical substances secreted from the host roots. Therefore, controlling SCN chemotaxis could be an effective strategy for its management. In the present study, we identified the Hg-gpa-3d gene, which encodes the G protein alpha subunit, as a key regulator of SCN chemotaxis. Gene silencing of Hg-gpa-3d reduced the attraction of SCN J2s to host roots, as well as to nitrate ions, a chemoattractant recognized through a mechanism different from that of host recognition. However, silencing of Hg-gpa-3d did not affect avoidance behavior towards unpleasant temperatures or stylet protrusion. These results suggest that Hg-gpa-3d is a crucial gene in the regulation of SCN chemotaxis and provide new insights into the chemotactic mechanisms of the SCN.
Collapse
Affiliation(s)
- Yasumasa Saeki
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Akito Hosoi
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Mizuki Nishioka
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Junta Fukuda
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
2
|
Mo C, Zhang L. Unraveling the Roles of Neuropeptides in the Chemosensation of the Root-Knot Nematode Meloidogyne javanica. Int J Mol Sci 2024; 25:6300. [PMID: 38928010 PMCID: PMC11204336 DOI: 10.3390/ijms25126300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The identification of novel drug targets in plant-parasitic nematodes (PPNs) is imperative due to the loss of traditional nematicides and a lack of replacements. Chemosensation, which is pivotal for PPNs in locating host roots, has become a focus in nematode behavioral research. However, its underlying molecular basis is still indistinct in such a diverse group of PPNs. To characterize genes participating in chemosensation in the Javanese root-knot nematode Meloidogyne javanica, RNA-sequencing of the second-stage juveniles (J2s) treated with tomato root exudate (TRE) for 1 h and 6 h was performed. Genes related to chemosensation in M. javanica mainly responded to TRE treatment at 1 h. Moreover, a gene ontology (GO) analysis underscored the significance of the neuropeptide G protein-coupled receptor signaling pathway. Consequently, the repertoire of putative neuropeptides in M. javanica, including FMRFamide-like peptides (FLPs), insulin-like peptides (ILPs), and neuropeptide-like peptides (NLPs), were outlined based on a homology analysis. The gene Mjflp-14a, harboring two neuropeptides, was significantly up-regulated at 1 h TRE treatment. Through peptide synthesis and J2 treatment, one of the two neuropeptides (MjFLP-14-2) was proven to influence the J2 chemotaxis towards tomato root tips. Overall, our study reinforces the potential of nematode neuropeptides as novel targets and tools for root-knot nematode control.
Collapse
Affiliation(s)
- Chenmi Mo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Lei Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Saeki Y, Hosoi A, Fukuda J, Sasaki Y, Yajima S, Ito S. Involvement of cyclic nucleotide-gated channels in soybean cyst nematode chemotaxis and thermotaxis. Biochem Biophys Res Commun 2023; 682:293-298. [PMID: 37832386 DOI: 10.1016/j.bbrc.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The soybean cyst nematode (SCN) is one of the most damaging pests affecting soybean production. SCN displays important host recognition behaviors, such as hatching and infection, by recognizing several compounds produced by the host. Therefore, controlling SCN behaviors such as chemotaxis and thermotaxis is an attractive pest control strategy. In this study, we found that cyclic nucleotide-gated channels (CNG channels) regulate SCN chemotaxis and thermotaxis and Hg-tax-2, a gene encoding a CNG channel, is an important regulator of SCN behavior. Gene silencing of Hg-tax-2 and treatment with a CNG channel inhibitor reduced the attraction of second-stage juveniles to nitrate, an attractant with a different recognition mechanism from the host-derived chemoattractant(s), and to host soybean roots, as well as their avoidance behavior toward high temperatures. Co-treatment of ds Hg-tax-2 with the CNG channel inhibitor indicated that Hg-tax-2 is a major regulator of SCN chemotaxis and thermotaxis. These results suggest new avenues for research on control of SCN.
Collapse
Affiliation(s)
- Yasumasa Saeki
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Akito Hosoi
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan; Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Junta Fukuda
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
4
|
Zhao Y, Zhou Q, Zou C, Zhang K, Huang X. Repulsive response of Meloidogyne incognita induced by biocontrol bacteria and its effect on interspecific interactions. Front Microbiol 2022; 13:994941. [PMID: 36187996 PMCID: PMC9520663 DOI: 10.3389/fmicb.2022.994941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The aversive behavior of Caenorhabditis elegans is an important strategy that increases their survival under pathogen infection, and the molecular mechanisms underlying this behavior have been described. However, whether this defensive response occurs in plant-parasitic nematodes (PPNs), which have quite different life cycles and genomic sequences from the model nematode, against biocontrol microbes and affects interspecific interactions in ecological environments remains unclear. Here, we showed that Meloidogyne incognita, one of the most common PPNs, engaged in lawn-leaving behavior in response to biocontrol bacteria such as Bacillus nematocida B16 and B. thuringiensis Bt79. Genomic analysis revealed that the key genes responsible for the aversive behavior of C. elegans, such as serotonin-and TGF-β-related genes in canonical signaling pathways, were homologous to those of M. incognita, and the similarity between these sequences ranged from 30% to 67%. Knockdown of the homologous genes impaired avoidance of M. incognita to varying degrees. Calcium ion imaging showed that the repulsive response requires the involvement of the multiple amphid neurons of M. incognita. In situ hybridization specifically localized Mi-tph-1 of the serotonin pathway to ADF/NSM neurons and Mi-dbl-1 of the TGF-β pathway to AVA neurons. Our data suggested that the repulsive response induced by different biocontrol bacteria strongly suppresses the invasion of tomato host plants by M. incognita. Overall, our study is the first to clarify the pathogen-induced repulsive response of M. incognita and elucidate its underlying molecular mechanisms. Our findings provide new insights into interspecific interactions among biocontrol bacteria, PPNs, and host plants.
Collapse
Affiliation(s)
- Yanli Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and College of Life Science, Yunnan University, Kunming, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qinying Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and College of Life Science, Yunnan University, Kunming, China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and College of Life Science, Yunnan University, Kunming, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and College of Life Science, Yunnan University, Kunming, China
| | - Xiaowei Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and College of Life Science, Yunnan University, Kunming, China
- School of Medicine, Yunnan University, Kunming, China
- *Correspondence: Xiaowei Huang,
| |
Collapse
|
5
|
Hada A, Singh D, Papolu PK, Banakar P, Raj A, Rao U. Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. PLANT CELL REPORTS 2021; 40:2287-2302. [PMID: 34387737 DOI: 10.1007/s00299-021-02767-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE This study establishes possibility of combinatorial silencing of more than one functional gene for their efficacy against root-knot nematode, M. incognita. Root-knot nematodes (RKN) of the genus Meloidogyne are the key important plant parasitic nematodes (PPNs) in agricultural and horticultural crops worldwide. Among RKNs, M. incognita is the most notorious that demand exploration of novel strategies for their management. Due to its sustainable and target-specific nature, RNA interference (RNAi) has gained unprecedented importance to combat RKNs. However, based on the available genomic information and interaction studies, it can be presumed that RKNs are dynamic and not dependent on single genes for accomplishing a particular function. Therefore, it becomes extremely important to consider silencing of more than one gene to establish any synergistic or additive effect on nematode parasitism. In this direction, we have combined three effectors specific to subventral gland cells of M. incognita, Mi-msp1, Mi-msp16, Mi-msp20 as fusion cassettes-1 and two FMRFamide-like peptides, Mi-flp14, Mi-flp18, and Mi-msp20 as fusion cassettes-2 to establish their possible utility for M. incognita management. In vitro RNAi assay in tomato and adzuki bean using these two fusion gene negatively altered nematode behavior in terms of reduced attraction, invasion, development, and reproduction. Subsequently, Nicotiana tabacum plants were transformed with these two fusion gene hairpin RNA-expressing vectors (hpRNA), and characterized via PCR, qRT-PCR, and Southern blot hybridization. Production of siRNAs specific to Mi-flp18 and Mi-msp1 was also confirmed by Northern hybridization. Further, transgenic events expressing single copy insertions of hpRNA constructs of fusion 1 and fusion-2 conferred up to 85% reduction in M. incognita multiplication. Besides, expression quantification revealed a significant reduction in mRNA abundance of target genes (up to 1.8-fold) in M. incognita females extracted from transgenic plants, and provided additional evidence for successful gene silencing.
Collapse
Affiliation(s)
- Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Divya Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ankita Raj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
6
|
Hada A, Singh D, Venkata Satyanarayana KKV, Chatterjee M, Phani V, Rao U. Effect of fluensulfone on different functional genes of root-knot nematode Meloidogyne incognita. J Nematol 2021; 53:e2021-73. [PMID: 34414375 PMCID: PMC8371937 DOI: 10.21307/jofnem-2021-073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Meloidogyne incognita is an obligate plant-parasitic nematode causing serious damage to agricultural crops. Major constraints in nematode management arose due to the limited availability of non-fumigant nematicides in conjunction with the considerable ill effects of fumigants on human and non-target organisms. Recently, fluensulfone has been reported to be an effective non-fumigant nematicide against plant-parasitic nematodes and the model nematode Caenorhabditis elegans. The nematicidal efficacy varies according to its concentration at the time of application, exposure timing, nematode species variability, and even across subpopulations within the same species. It interferes with the key physiological processes of nematodes, like motility, behavior, chemosensation, stylet thrusting, infectivity, metabolism, lipid consumption, tissue integrity, oviposition, egg hatching, and survival. However, the molecular basis of these multivariate physiological anomalies is still largely unknown. Quantitative real-time PCR was carried out to understand the acute transcriptional perturbation of 30 functional genes associated with key physiological and life processes in a M. incognita population, following exposure of 10, 50, and 100 ppm of fluensulfone for 5 and 10 hr. The chemical treatment resulted in significant downregulation of all the neuropeptidergic genes, with concomitant repression of majority of genes related to chemosensation, esophageal gland secretion, parasitism, fatty acid metabolism, and G-protein coupled receptors. Collectively, the parasitism genes were found to be perturbed at highest magnitude, followed by the GPCRs and neuropeptidergic genes. These results establish the wide ranging effect of fluensulfone on various metabolic and physiological pathways of nematode.
Collapse
Affiliation(s)
- Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Divya Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Madhurima Chatterjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Genome Expression Dynamics Reveal the Parasitism Regulatory Landscape of the Root-Knot Nematode Meloidogyne incognita and a Promoter Motif Associated with Effector Genes. Genes (Basel) 2021; 12:genes12050771. [PMID: 34070210 PMCID: PMC8158474 DOI: 10.3390/genes12050771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Root-knot nematodes (genus Meloidogyne) are the major contributor to crop losses caused by nematodes. These nematodes secrete effector proteins into the plant, derived from two sets of pharyngeal gland cells, to manipulate host physiology and immunity. Successful completion of the life cycle, involving successive molts from egg to adult, covers morphologically and functionally distinct stages and will require precise control of gene expression, including effector genes. The details of how root-knot nematodes regulate transcription remain sparse. Here, we report a life stage-specific transcriptome of Meloidogyne incognita. Combined with an available annotated genome, we explore the spatio-temporal regulation of gene expression. We reveal gene expression clusters and predicted functions that accompany the major developmental transitions. Focusing on effectors, we identify a putative cis-regulatory motif associated with expression in the dorsal glands, providing an insight into effector regulation. We combine the presence of this motif with several other criteria to predict a novel set of putative dorsal gland effectors. Finally, we show this motif, and thereby its utility, is broadly conserved across the Meloidogyne genus, and we name it Mel-DOG. Taken together, we provide the first genome-wide analysis of spatio-temporal gene expression in a root-knot nematode and identify a new set of candidate effector genes that will guide future functional analyses.
Collapse
|
8
|
You J, Pan F, Wang S, Wang Y, Hu Y. FMRFamide-Like Peptide 22 Influences the Head Movement, Host Finding, and Infection of Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2021; 12:673354. [PMID: 34239524 PMCID: PMC8258376 DOI: 10.3389/fpls.2021.673354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 05/13/2023]
Abstract
The FMRFamide-like peptides (FLPs) represent the largest family of nematode neuropeptides and are involved in multiple parasitic activities. The immunoreactivity to FMRFamide within the nervous system of Heterodera glycines, the most economically damaging parasite of soybean [Glycine max L. (Merr)], has been reported in previous research. However, the family of genes encoding FLPs of H. glycines were not identified and functionally characterized. In this study, an FLP encoding gene Hg-flp-22 was cloned from H. glycines, and its functional characterization was uncovered by using in vitro RNA interference and application of synthetic peptides. Bioinformatics analysis showed that flp-22 is widely expressed in multiple nematode species, where they encode the highly conserved KWMRFamide motifs. Quantitative real-time (qRT)-PCR results revealed that Hg-flp-22 was highly expressed in the infective second-stage juveniles (J2s) and adult males. Silencing of Hg-flp-22 resulted in the reduced movement of J2s to the host root and reduced penetration ability, as well as a reduction in their subsequent number of females. Behavior and infection assays demonstrated that application of synthetic peptides Hg-FLP-22b (TPQGKWMRFa) and Hg-FLP-22c (KMAIEGGKWVRFa) significantly increased the head movement frequency and host invasion abilities in H. glycines but not in Meloidogyne incognita. In addition, the number of H. glycines females on the host roots was found to be significantly higher in Hg-FLP-22b treated nematodes than the ddH2O-treated control J2s. These results presented in this study elucidated that Hg-flp-22 plays a role in regulating locomotion and infection of H. glycines. This suggests the potential of FLP signaling as putative control targets for H. glycines in soybean production.
Collapse
Affiliation(s)
- Jia You
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Institute of Pratacultural Science, Heilongjiang Academy of Agricultural Science, Harbin, China
| | - Fengjuan Pan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Shuo Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yu Wang
- College of Agricultural Resource and Environment, Heilongjiang University, Harbin, China
| | - Yanfeng Hu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- *Correspondence: Yanfeng Hu,
| |
Collapse
|
9
|
Dutta TK, Papolu PK, Singh D, Sreevathsa R, Rao U. Expression interference of a number of Heterodera avenae conserved genes perturbs nematode parasitic success in Triticum aestivum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110670. [PMID: 33218636 DOI: 10.1016/j.plantsci.2020.110670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 05/26/2023]
Abstract
The cereal cyst nematode, Heterodera avenae is distributed worldwide and causes substantial damage in bread wheat, Triticum aestivum. This nematode is extremely difficult to manage because of its prolonged persistence as unhatched eggs encased in cysts. Due to its sustainable and target-specific nature, RNA interference (RNAi)-based strategy has gained unprecedented importance for pest control. To date, RNAi strategy has not been exploited to manage H. avenae in wheat. In the present study, 40 H. avenae target genes with different molecular function were rationally selected for in vitro soaking analysis in order to assess their susceptibility to RNAi. In contrast to target-specific downregulation of 18 genes, 7 genes were upregulated and 15 genes showed unaltered expression (although combinatorial soaking showed some of these genes are RNAi susceptible), suggesting that a few of the target genes were refractory or recalcitrant to RNAi. However, RNAi of 37 of these genes negatively altered nematode behavior in terms of reduced penetration, development and reproduction in wheat. Subsequently, wheat plants were transformed with seven H. avenae target genes (that showed greatest abrogation of nematode parasitic success) for host-induced gene silencing (HIGS) analysis. Transformed plants were molecularly characterized by PCR, RT-qPCR and Southern hybridization. Production of target gene-specific double- and single-stranded RNA (dsRNA/siRNA) was detected in transformed plants. Transgenic expression of galectin, cathepsin L, vap1, serpin, flp12, RanBPM and chitinase genes conferred 33.24-72.4 % reduction in H. avenae multiplication in T1 events with single copy ones exhibiting greatest reduction. A similar degree of resistance observed in T2 plants indicated the consistent HIGS effect in the subsequent generations. Intriguingly, cysts isolated from RNAi plants were of smaller size with translucent cuticle compared to normal size, dark brown control cysts, suggesting H. avenae developmental retardation due to HIGS. Our study reinforces the potential of HIGS to manage nematode problems in crop plant.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Divya Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
10
|
Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research - Old model, new perspectives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:237-248. [PMID: 33249235 PMCID: PMC7704361 DOI: 10.1016/j.ijpddr.2020.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For more than four decades, the free-living nematode Caenorhabditis elegans has been extensively used in anthelmintic research. Classic genetic screens and heterologous expression in the C. elegans model enormously contributed to the identification and characterization of molecular targets of all major anthelmintic drug classes. Although these findings provided substantial insights into common anthelmintic mechanisms, a breakthrough in the treatment and control of parasitic nematodes is still not in sight. Instead, we are facing increasing evidence that the enormous diversity within the phylum Nematoda cannot be recapitulated by any single free-living or parasitic species and the development of novel broad-spectrum anthelmintics is not be a simple goal. In the present review, we summarize certain milestones and challenges of the C. elegans model with focus on drug target identification, anthelmintic drug discovery and identification of resistance mechanisms. Furthermore, we present new perspectives and strategies on how current progress in C. elegans research will support future anthelmintic research.
Collapse
Affiliation(s)
| | - Clayton M Dilks
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | | - Erik C Andersen
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | |
Collapse
|
11
|
Ye S, Zeng R, Zhou J, An M, Ding Z. Molecular characterization of Ditylenchus destructor voltage-gated calcium channel α1 subunits and analysis of the effect of their knockdown on nematode activity. Biochimie 2020; 171-172:91-102. [PMID: 32109501 DOI: 10.1016/j.biochi.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/19/2020] [Indexed: 01/17/2023]
Abstract
Voltage-gated calcium channels (VGCCs) mediate the entry of Ca2+ ions into cells in response to membrane depolarization and play fundamental roles in the nervous system, and the α1 subunits are the main subunits of Ca2+ channels. Caenorhabditis elegans possesses genes encoding α1 subunits; however, very few of these genes have been cloned in plant-parasitic nematodes (PPNs). Ditylenchus destructor is a PPN that has been proposed as a new model for studying the biology and control of PPNs. To understand the structure and function of the VGCCs of this PPN, we first cloned and identified three full-length cDNAs of VGCC α1 subunit genes in D. destructor with the defining structural and conserved features of Cav1 (L-type), Cav2 (non-L-type) and Cav3 (T-type). In situ hybridization assays demonstrated that the Cav1 VGCC α1 subunit gene (DdCα1D) was expressed within body wall muscles. The Cav2 VGCC α1 subunit (DdCα1A) was expressed in the oesophageal gland, vulva and vas deferens of the worm, and the Cav3 VGCC α1 subunit (DdCα1G) was localized to the oesophagus and median bulb. In addition, on the basis of the in vitro knockdown of L-, non-L- and T-type genes via RNAi, these genes were predicted to play a key role in the modulation of locomotion, feeding and reproduction. After the silencing of DdCα1G, the median bulb muscle of D. destructor was obviously contracted, and its feeding and reproduction abilities were significantly inhibited. This study provides insight into the structure and function of VGCC α1 subunits in D. destructor.
Collapse
Affiliation(s)
- Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Provincial Engineering & Technology Research Center for Bio-pesticide and Formulation Processing, Changsha, Hunan, 410128, China
| | - Rune Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianyu Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Mingwei An
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Provincial Engineering & Technology Research Center for Bio-pesticide and Formulation Processing, Changsha, Hunan, 410128, China.
| |
Collapse
|
12
|
Shivakumara TN, Dutta TK, Chaudhary S, von Reuss SH, Williamson VM, Rao U. Homologs of Caenorhabditis elegans Chemosensory Genes Have Roles in Behavior and Chemotaxis in the Root-Knot Nematode Meloidogyne incognita. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:876-887. [PMID: 30759351 DOI: 10.1094/mpmi-08-18-0226-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nematode chemosensation is a vital component of their host-seeking behavior. The globally important phytonematode Meloidogyne incognita perceives and responds (via sensory organs such as amphids and phasmids) differentially to various chemical cues emanating from the rhizosphere during the course of host finding. However, compared with the free-living worm Caenorhabditis elegans, the molecular intricacies behind the plant nematode chemotaxis are a yet-unexploited territory. In the present study, four putative chemosensory genes of M. incognita, namely, Mi-odr-1, Mi-odr-3, Mi-tax-2, and Mi-tax-4 were molecularly characterized. Mi-odr-1 mRNA was found to be expressed in the cell bodies of amphidial neurons and phasmids of M. incognita. Mi-odr-1, Mi-odr-3, Mi-tax-2, and Mi-tax-4 transcripts were highly expressed in early life stages of M. incognita, consistent with a role of these genes in host recognition. Functional characterization of Mi-odr-1, Mi-odr-3, Mi-tax-2, and Mi-tax-4 via RNA interference revealed behavioral defects in M. incognita and perturbed attraction to host roots in Pluronic gel medium. Knockdown of Mi-odr-1, Mi-odr-3, Mi-tax-2, and Mi-tax-4 resulted in defective chemotaxis of M. incognita to various volatile compounds (alcohol, ketone, aromatic compound, ester, thiazole, pyrazine), nonvolatiles of plant origin (carbohydrate, phytohormone, organic acid, amino acid, phenolic), and host root exudates in an agar-Pluronic gel-based assay plate. In addition, ascaroside-mediated signaling was impeded by downregulation of chemosensory genes. This new information that behavioral response in M. incognita is modulated by specific olfactory genes can be extended to understand chemotaxis in other nematodes.
Collapse
Affiliation(s)
| | - Tushar K Dutta
- 1 Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sonam Chaudhary
- 1 Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Stephan H von Reuss
- 2 Institute of Chemistry, University of Neuchâtel, Neuchâtel, Avenue de Bellevaux 51, Switzerland
| | - Valerie M Williamson
- 3 Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Uma Rao
- 1 Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
13
|
Shivakumara TN, Dutta TK, Mandal A, Rao U. Estimation of lipid reserves in different life stages of Meloidogyne incognita using image analysis of Nile Red-stained nematodes. NEMATOLOGY 2019. [DOI: 10.1163/15685411-00003212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Biochemical analyses of nematodes have revealed that neutral lipids (especially triglycerides) are the main source of energy reserves, which is depleted as the nematodes age. Several methodologies have been developed to visualise triglyceride-rich fat stores in plant-parasitic nematodes using non-fluorescent, lipophilic dyes, such as Oil Red O. Here, we propose a robust and reproducible fluorescence-based Nile Red staining method (followed by image analysis) for rapid detection of neutral lipid droplets in Meloidogyne incognita. This unique lipophilic dye selectively fluoresces in red and green spectra in a lipid-rich environment. The neutral lipid content of M. incognita juveniles gradually diminished during different periods of food deprivation, and this was significantly correlated with reduction in parasitic success of M. incognita in eggplant. Additionally, variation in fat reserves in different developmental stages of M. incognita infecting adzuki bean was also demonstrated. This investigation may aid future metabolic research, including functional analysis of lipid regulatory genes in plant-parasitic nematodes.
Collapse
Affiliation(s)
- Tagginahalli N. Shivakumara
- 1Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- 2School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | - Tushar K. Dutta
- 1Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Abhishek Mandal
- 3Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Uma Rao
- 1Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
14
|
Shivakumara TN, Dutta TK, Rao U. A novel in vitro chemotaxis bioassay to assess the response of Meloidogyne incognita towards various test compounds. J Nematol 2018; 50:487-494. [PMID: 31094151 DOI: 10.21307/jofnem-2018-047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plant-parasitic, root-knot nematodes (Meloidogyne spp.) are a serious problem in agri- and horticultural crops worldwide. Understanding their complex host recognition process is essential for devising efficient and environmental-friendly management tactics. In this study, the authors report a new, simple, inexpensive, efficient, and quantitative method to analyze the chemotaxis of M. incognita second-stage juveniles (J2s) using a combination of pluronic gel and agar in a petri dish. The authors quantitatively defined the concentration gradient formation of acid fuchsin on the assay plate. Using this novel assay method, the authors have accurately measured the nematode response (attraction or repulsion) to various volatile (isoamyl alcohol, 1-butanol, benzaldehyde, 2-butanone, and 1-octanol) and non-volatile (root exudates of tomato, tobacco, and marigold) compounds. Isoamyl alcohol, 1-butanol, and 2-butanone were attractive to J2s through a broad range of concentrations. On the contrary, J2s were repelled when exposed to various concentrations of 1-octanol. Despite being attractive at lower concentrations, undiluted benzaldehyde was repulsive to J2s. Tomato and tobacco root exudates were attractive to J2s while marigold root exudates repelled J2s. The present quantitative assay method could be used as a reference to screen and identify new candidate molecules that attract or repel nematodes. Plant-parasitic, root-knot nematodes (Meloidogyne spp.) are a serious problem in agri- and horticultural crops worldwide. Understanding their complex host recognition process is essential for devising efficient and environmental-friendly management tactics. In this study, the authors report a new, simple, inexpensive, efficient, and quantitative method to analyze the chemotaxis of M. incognita second-stage juveniles (J2s) using a combination of pluronic gel and agar in a petri dish. The authors quantitatively defined the concentration gradient formation of acid fuchsin on the assay plate. Using this novel assay method, the authors have accurately measured the nematode response (attraction or repulsion) to various volatile (isoamyl alcohol, 1-butanol, benzaldehyde, 2-butanone, and 1-octanol) and non-volatile (root exudates of tomato, tobacco, and marigold) compounds. Isoamyl alcohol, 1-butanol, and 2-butanone were attractive to J2s through a broad range of concentrations. On the contrary, J2s were repelled when exposed to various concentrations of 1-octanol. Despite being attractive at lower concentrations, undiluted benzaldehyde was repulsive to J2s. Tomato and tobacco root exudates were attractive to J2s while marigold root exudates repelled J2s. The present quantitative assay method could be used as a reference to screen and identify new candidate molecules that attract or repel nematodes.
Collapse
Affiliation(s)
- Tagginahalli N Shivakumara
- Division of Nematology, ICAR-Indian Agricultural Research Institute , New Delhi, 110012 , India ; School of Biotechnology, Kalinga Institute of Industrial Technology , Bhubaneswar, 751024 , India
| | - Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute , New Delhi, 110012 , India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute , New Delhi, 110012 , India
| |
Collapse
|