1
|
Huang LX, Sun T, Sun J, Wu ZM, Ling C, Zhang BY, Chen C, Wang H. Non-Coding RNA in Schwann Cell and Peripheral Nerve Injury: A Review. Adv Biol (Weinh) 2024:e2400357. [PMID: 39185790 DOI: 10.1002/adbi.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Indexed: 08/27/2024]
Abstract
Peripheral nerve injury (PNI) can result in severe disabilities, profoundly impacting patients' quality of life and potentially endangering their lives. Therefore, understanding the potential molecular mechanisms that facilitate the regeneration of damaged nerves is crucial. Evidence indicates that Schwann cells (SCs) play a pivotal role in repairing peripheral nerve injuries. Previous studies have shown that RNA, particularly non-coding RNA (ncRNA), plays a crucial role in nerve regeneration, including the proliferation and dedifferentiation of SCs. In this review, the individual roles of ncRNA in SCs and PNI are analyzed. This review not only enhances the understanding of ncRNA's role in nerve injury repair but also provides a significant theoretical foundation and inspiration for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Li-Xin Huang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zhi-Min Wu
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Bao-Yu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
2
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
3
|
Huang Z, Li X, Liu J, Wang H. of Potential Noncoding RNAs Related to Spinal Cord Injury Based on Competing Endogenous RNAs. Mol Neurobiol 2024:10.1007/s12035-024-04189-2. [PMID: 38809369 DOI: 10.1007/s12035-024-04189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/13/2024] [Indexed: 05/30/2024]
Abstract
This study aims to elucidate the key regulatory molecules, specifically messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) and their roles in the development and progression of spinal cord injury (SCI). Expression profiles (GSE45006, GSE19890, and GSE125630) for SCI were sourced from the Gene Expression Omnibus (GEO) database. By comparing rats with SCI at various time points against those without SCI, we identified differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and miRNAs (DEmiRNAs). The GSE45006 dataset facilitated the production of DEmRNAs, which were then clustered using Mfuzz. Subsequently, we constructed a protein-protein interaction (PPI) network and anticipated interaction pairs between miRNA-mRNA and lncRNA-mRNA. These pairs were instrumental in forming a regulatory network involving lncRNA-miRNA-mRNA interactions. Additionally, we conducted functional enrichment studies on the DEmRNAs within these gene networks. A total of 2313 DEmRNAs were identified using the GSE45006 dataset, alongside 111 DEmiRNAs from GSE19890. From GSE125630, we extracted 154 DElncRNAs and 2322 DEmRNAs. Our analysis revealed 294 up-regulated DEmRNAs, grouped into the up-cluster, and 407 down-regulated DEmRNAs, forming the down-cluster. Key hub genes in the PPI network, such as Rhof, Vav1, Lyz2, Rab3a, Lyn, Cyfip1, Gns, and Nckap1l, were identified. Additionally, the study successfully constructed a competing endogenous RNA (ceRNA) network, revealing 55 unique lncRNA-miRNA-mRNA link pairs. Our research established a ceRNA network associated with SCI, identifying several critical lncRNA-miRNA-mRNA connection pairs integral to the disease's onset and progression. Notably, significant associations, including the AABR07041411.1-miR-125a-5p-Slc4a7 and the Smg1-rno-miR-331-3p-Tlr4 pairs, were observed to exert a significant influence within this biological context.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130021, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Xianglan Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China.
| | - Jun Liu
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130021, China.
| | - Hailiang Wang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
4
|
Almalki WH. Unraveling the role of Xist RNA in cardiovascular pathogenesis. Pathol Res Pract 2024; 253:154944. [PMID: 38006839 DOI: 10.1016/j.prp.2023.154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Understanding the molecular pathways behind cardiovascular illnesses is crucial due to the enormous worldwide health burden they impose. New insights into the role played by Xist (X-inactive specific transcript) RNA in the onset and progression of cardiovascular diseases have emerged from recent studies. Since its discovery, Xist RNA has been known for its role in X chromosome inactivation during embryogenesis; however, new data suggest that its function extends well beyond the control of sex chromosomes. The regulatory roles of Xist RNA are extensive, encompassing epigenetic changes, gene expression, cellular identity, and sex chromosomal inactivation. There is potential for the involvement of this complex regulatory web in a wide range of illnesses, including cardiovascular problems. Atherosclerosis, hypertrophy, and cardiac fibrosis are all conditions linked to dysregulation of Xist RNA expression. Alterations in DNA methylation and histones are two examples of epigenetic changes that Xist RNA orchestrates, leading to modifications in gene expression patterns in different cardiovascular cells. Additionally, Xist RNA has been shown to contribute to the development of cardiovascular illnesses by modulating endothelial dysfunction, inflammation, and oxidative stress responses. New treatment approaches may become feasible with a thorough understanding of the complex function of Xist RNA in cardiovascular diseases. By focusing on Xist RNA and the regulatory network with which it interacts, we may be able to slow the progression of atherosclerosis, cardiac hypertrophy, and fibrosis, thereby opening novel therapeutic options for cardiovascular diseases amenable to precision medicine. This review summarizes the current state of knowledge concerning the impact of Xist RNA in cardiovascular disorders.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
5
|
Jin H, Jiang W, Zheng X, Li L, Fang Y, Yang Y, Hu X, Chu L. MiR-199a-5p enhances neuronal differentiation of neural stem cells and promotes neurogenesis by targeting Cav-1 after cerebral ischemia. CNS Neurosci Ther 2023; 29:3967-3979. [PMID: 37349971 PMCID: PMC10651989 DOI: 10.1111/cns.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
AIMS MicroRNAs (miRs) are involved in endogenous neurogenesis, enhancing of which has been regarded as a potential therapeutic strategy for ischemic stroke treatment; however, whether miR-199a-5p mediates postischemic neurogenesis remains unclear. This study aims to investigate the proneurogenesis effects of miR-199a-5p and its possible mechanism after ischemic stroke. METHODS Neural stem cells (NSCs) were transfected using Lipofectamine 3000 reagent, and the differentiation of NSCs was evaluated by immunofluorescence and Western blotting. Dual-luciferase reporter assay was performed to verify the target gene of miR-199a-5p. MiR-199a-5p agomir/antagomir were injected intracerebroventricularly. The sensorimotor functions were evaluated by neurobehavioral tests, infarct volume was measured by toluidine blue staining, neurogenesis was detected by immunofluorescence assay, and the protein levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), caveolin-1 (Cav-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) were measured by Western blotting. RESULTS MiR-199a-5p mimic enhanced neuronal differentiation and inhibited astrocyte differentiation of NSCs, while a miR-199a-5p inhibitor induced the opposite effects, which can be reversed by Cav-1 siRNA. Cav-1 was through the dual-luciferase reporter assay confirmed as a target gene of miR-199a-5p. miR-199a-5p agomir in rat stroke models manifested multiple benefits, such as improving neurological deficits, reducing infarct volume, promoting neurogenesis, inhibiting Cav-1, and increasing VEGF and BDNF, which was reversed by the miR-199a-5p antagomir. CONCLUSION MiR-199a-5p may target and inhibit Cav-1 to enhance neurogenesis and thus promote functional recovery after cerebral ischemia. These findings indicate that miR-199a-5p is a promising target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hua‐Qian Jin
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Wei‐Feng Jiang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin‐Tian Zheng
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Li
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Fang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Yang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiao‐Wei Hu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Li‐Sheng Chu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
6
|
Azad TD, Ran KR, Liu J, Vattipally VN, Khela H, Leite E, Materi JD, Davidar AD, Bettegowda C, Theodore N. A future blood test for acute traumatic spinal cord injury. Biomarkers 2023; 28:703-713. [PMID: 38126897 DOI: 10.1080/1354750x.2023.2298650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Acute spinal cord injury (SCI) requires prompt diagnosis and intervention to minimize the risk of permanent neurologic deficit. Presently, SCI diagnosis and interventional planning rely on magnetic resonance imaging (MRI), which is not always available or feasible for severely injured patients. Detection of disease-specific biomarkers in biofluids via liquid biopsy may provide a more accessible and objective means of evaluating patients with suspected SCI. Cell-free DNA, which has been used for diagnosing and monitoring oncologic disease, may detect damage to spinal cord neurons via tissue-specific methylation patterns. Other types of biomarkers, including proteins and RNA species, have also been found to reflect neuronal injury and may be included as part of a multi-analyte assay to improve liquid biopsy performance. The feasibility of implementing liquid biopsy into current practices of SCI management is supported by the relative ease of blood sample collection as well as recent advancements in droplet digital polymerase chain reaction technology. In this review, we detail the current landscape of biofluid biomarkers for acute SCI and propose a framework for the incorporation of a putative blood test into the clinical management of SCI.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kathleen R Ran
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jiaqi Liu
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Harmon Khela
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Enzo Leite
- Faculdade Pernambucana de Saúde (FPS), Recife, PE, Brazil
| | - Joshua D Materi
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - A Daniel Davidar
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
7
|
Zhong M, Fan G, An Z, Chen C, Dong L. Research progress on long non-coding RNAs for spinal cord injury. J Orthop Surg Res 2023; 18:520. [PMID: 37480035 PMCID: PMC10362720 DOI: 10.1186/s13018-023-03989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Spinal cord injury is a complex central nervous system disease with an unsatisfactory prognosis, often accompanied by multiple pathological processes. However, the underlying mechanisms of action of this disease are unclear, and there are no suitable targeted therapeutic options. Long non-coding RNA mediates a variety of neurological diseases and regulates various biological processes, including apoptosis and autophagy, inflammatory response, microenvironment, and oxidative stress. It is known that long non-coding RNAs have significant differences in gene expression in spinal cord injury. To further understand the mechanism of long non-coding RNA action in spinal cord injury and develop preventive and therapeutic strategies regarding spinal cord injury, this review outlines the current status of research between long non-coding RNAs and spinal cord injury and potential long non-coding RNAs targeting spinal cord injury.
Collapse
Affiliation(s)
- Musen Zhong
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guangya Fan
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongcheng An
- Orthopedic Traumatology II, The Sceond Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Chen
- Orthopedic Traumatology II, The Sceond Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liqiang Dong
- Orthopedic Traumatology II, The Sceond Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Cai Z, Han X, Li R, Yu T, Chen L, Wu X, Jin J. Research Progress of Long Non-coding RNAs in Spinal Cord Injury. Neurochem Res 2023; 48:1-12. [PMID: 35974214 PMCID: PMC9823062 DOI: 10.1007/s11064-022-03720-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI) can result in a partial or complete loss of motor and sensory function below the injured segment, which has a significant impact on patients' quality of life and places a significant social burden on them. Long non-coding RNA (LncRNA) is a 200-1000 bp non-coding RNA that has been shown to have a key regulatory role in the progression of a variety of neurological illnesses. Many studies have demonstrated that differentially expressed LncRNAs following spinal cord injury can participate in inflammatory damage, apoptosis, and nerve healing by functioning as competitive endogenous RNA (ceRNA); at the same time, it has a significant regulatory effect on sequelae such neuropathic pain. As a result, we believe that LncRNAs could be useful as a molecular regulatory target in the diagnosis, treatment, and prognosis of spinal cord injury.
Collapse
Affiliation(s)
- Zongyan Cai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xue Han
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ruizhe Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Tianci Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Lei Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - XueXue Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jiaxin Jin
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China.
- Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
9
|
Pant T, DiStefano JK, Logan S, Bosnjak ZJ. Emerging Role of Long Noncoding RNAs in Perioperative Neurocognitive Disorders and Anesthetic-Induced Developmental Neurotoxicity. Anesth Analg 2021; 132:1614-1625. [PMID: 33332892 DOI: 10.1213/ane.0000000000005317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical investigations in animal models have consistently demonstrated neurobiological changes and life-long cognitive deficits following exposure to widely used anesthetics early in life. However, the mechanisms by which these exposures affect brain function remain poorly understood, therefore, limiting the efficacy of current diagnostic and therapeutic options in human studies. The human brain exhibits an abundant expression of long noncoding RNAs (lncRNAs). These biologically active transcripts play critical roles in a diverse array of functions, including epigenetic regulation. Changes in lncRNA expression have been linked with brain development, normal CNS processes, brain injuries, and the development of neurodegenerative diseases, and many lncRNAs are known to have brain-specific expression. Aberrant lncRNA expression has also been implicated in areas of growing importance in anesthesia-related research, including anesthetic-induced developmental neurotoxicity (AIDN), a condition defined by neurological changes occurring in patients repeatedly exposed to anesthesia, and the related condition of perioperative neurocognitive disorder (PND). In this review, we detail recent advances in PND and AIDN research and summarize the evidence supporting roles for lncRNAs in the brain under both normal and pathologic conditions. We also discuss lncRNAs that have been linked with PND and AIDN, and conclude with a discussion of the clinical potential for lncRNAs to serve as diagnostic and therapeutic targets for the prevention of these neurocognitive disorders and the challenges facing the identification and characterization of associated lncRNAs.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Diabetes and Fibrotic Disease Unit, Translational Genomic Research Institute, Phoenix, Arizona
| | | | - Sara Logan
- Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zeljko J Bosnjak
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci 2021; 11:117. [PMID: 34187567 PMCID: PMC8243427 DOI: 10.1186/s13578-021-00630-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased survival. The pathogenesis of PNI switches from 'low-resistance channel' hypothesis to 'mutual attraction' theory between peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA (miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
11
|
Guo XD, He XG, Yang FG, Liu MQ, Wang YD, Zhu DX, Zhang GZ, Ma ZJ, Kang XW. Research progress on the regulatory role of microRNAs in spinal cord injury. Regen Med 2021; 16:465-476. [PMID: 33955796 DOI: 10.2217/rme-2020-0125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is a severe CNS injury that results in abnormalities in, or loss of, motor, sensory and autonomic nervous function. miRNAs belong to a new class of noncoding RNA that regulates the production of proteins and biological function of cells by silencing translation or interfering with the expression of target mRNAs. Following SCI, miRNAs related to oxidative stress, inflammation, autophagy, apoptosis and many other secondary injuries are differentially expressed, and these miRNAs play an important role in the progression of secondary injuries after SCI. The purpose of this review is to elucidate the differential expression and functional roles of miRNAs after SCI, thus providing references for further research on miRNAs in SCI.
Collapse
Affiliation(s)
- Xu-Dong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Feng-Guang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Ming-Qiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Yi-Dian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Da-Xue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China
| |
Collapse
|
12
|
Studies on the Regulatory Roles and Related Mechanisms of lncRNAs in the Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6657944. [PMID: 33791072 PMCID: PMC7984887 DOI: 10.1155/2021/6657944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have attracted extensive attention due to their regulatory role in various cellular processes. Emerging studies have indicated that lncRNAs are expressed to varying degrees after the growth and development of the nervous system as well as injury and degeneration, thus affecting various physiological processes of the nervous system. In this review, we have compiled various reported lncRNAs related to the growth and development of central and peripheral nerves and pathophysiology (including advanced nerve centers, spinal cord, and peripheral nervous system) and explained how these lncRNAs play regulatory roles through their interactions with target-coding genes. We believe that a full understanding of the regulatory function of lncRNAs in the nervous system will contribute to understand the molecular mechanism of changes after nerve injury and will contribute to discover new diagnostic markers and therapeutic targets for nerve injury diseases.
Collapse
|
13
|
Li P, Jia Y, Tang W, Cui Q, Liu M, Jiang J. Roles of Non-coding RNAs in Central Nervous System Axon Regeneration. Front Neurosci 2021; 15:630633. [PMID: 33597844 PMCID: PMC7882506 DOI: 10.3389/fnins.2021.630633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axons in the central nervous system often fail to regenerate after injury due to the limited intrinsic regeneration ability of the central nervous system (CNS) and complex extracellular inhibitory factors. Therefore, it is of vital importance to have a better understanding of potential methods to promote the regeneration capability of injured nerves. Evidence has shown that non-coding RNAs play an essential role in nerve regeneration, especially long non-coding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA). In this review, we profile their separate roles in axon regeneration after CNS injuries, such as spinal cord injury (SCI) and optic nerve injury. In addition, we also reveal the interactive networks among non-coding RNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Zhou J, Li Z, Zhao Q, Wu T, Zhao Q, Cao Y. Knockdown of SNHG1 alleviates autophagy and apoptosis by regulating miR-362-3p/Jak2/stat3 pathway in LPS-injured PC12 cells. Neurochem Res 2021; 46:945-956. [PMID: 33515352 DOI: 10.1007/s11064-020-03224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) is a serious neurological disease. Long non-coding RNA (lncRNA) small nucleolar RNA host gene (SNHG1) and microRNA-362-3p (miR-362-3p) were confirmed to be related to neurological disorders. However, it is unclear whether SNHG1 was involved in the development of SCI via regulating miR-362-3p. PC12 cells were treated with lipopolysaccharide (LPS) to imitate the in vitro cell model of SCI. Cell ciability and apoptosis rate were detected by cell counting kit-8 (CCK-8) assay and flow cytometry assay. The levels of SNHG1, miR-362-3p, and Janus kinase-2 (Jak2) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay were performed to verify the interaction between miR-362-3p and SNHG1 or Jak2. Besides, the levels of apoptosis- and autophagy- related proteins were detected by western blot assay. In present research, LPS suppressed cell viability, and induced apoptosis and autophagy in PC12 cells. SNHG1 knockdown could affect cell viability, and suppress cell apoptosis and autophagy in LPS-treated PC12 cells. Moreover, miR-362-3p was a target of SNHG1, miR-362-3p targeted Jak2 and negatively regulated Jak2/stat3 pathway. Our data also demonstrated that SNHG1 depletion inactivated Jak2/stat3 pathway to affect cell viability and confine apoptosis, autophagy in LPS-treated PC12 cells. Taken together, SNHG1 regulated cell viability, apoptosis and autophagy in LPS-treated PC12 cells by activating Jak2/stat3 pathway via sponging miR-362-3p.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Orthopaedic, The Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Zhiyue Li
- Department of Orthopaedic, The Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Qun Zhao
- Department of Orthopaedic, The Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Tianding Wu
- Department of Orthopaedic, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Qiancheng Zhao
- Department of Orthopaedic, The Third Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yong Cao
- Department of Orthopaedic, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Jiang T, Cai Z, Ji Z, Zou J, Liang Z, Zhang G, Liang Y, Lin H, Tan M. The lncRNA MALAT1/miR-30/Spastin Axis Regulates Hippocampal Neurite Outgrowth. Front Cell Neurosci 2020; 14:555747. [PMID: 33192306 PMCID: PMC7606917 DOI: 10.3389/fncel.2020.555747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Spastin, a microtubule-severing enzyme, is important for neurite outgrowth. However, the mechanisms underlying the post-transcriptional regulation of spastin during microtubule-related processes are largely unknown. We demonstrated that the spastin expression level is controlled by a long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-30 (miR-30) axis during neurite outgrowth. The miR-30 expression level decreased in hippocampal neurons with increasing days in culture, and miR-30 overexpression suppressed while miR-30 inhibition promoted neurite outgrowth in hippocampal neurons. Spastin was validated as a target gene of miR-30 using the luciferase reporter assay. The protein expression, microtubule severing activity, and neurite promoting effect of spastin were suppressed by the overexpression of miR-30 mimics and increased by miR-30 inhibitors. MALAT1 expression increased during neurite outgrowth and MALAT1 silencing impaired neurite outgrowth. miR-30 was a sponge target of MALAT1 and MALAT1/miR-30 altered neurite outgrowth in hippocampal neurons. MALAT1 overexpression reversed the inhibitory effect of miR-30 on the activity of a luciferase reporter construct containing spastin, as well as spastin mRNA and protein expression, indicating that spastin was a downstream effector of MALAT1/miR-30. The MALAT1/miR-30 cascade also modulated spastin-induced microtubule severing, and the MALAT1/miR-30/spastin axis regulated neurite outgrowth in hippocampal neurons. This study suggests a new mechanism governing neurite outgrowth in hippocampal neurons involving MALAT1/miR-30-regulated spastin expression.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Orthopaedics, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhenbin Cai
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhisheng Ji
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jianyu Zou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhi Liang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guowei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yaozhong Liang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongsheng Lin
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minghui Tan
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Yang H, Ma J, Wang Z, Yao X, Zhao J, Zhao X, Wang F, Zhang Y. Genome-Wide Analysis and Function Prediction of Long Noncoding RNAs in Sheep Pituitary Gland Associated with Sexual Maturation. Genes (Basel) 2020; 11:E320. [PMID: 32192168 PMCID: PMC7140784 DOI: 10.3390/genes11030320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays a crucial role in the hypothalamic-pituitary-testis (HPT) axis associated with sheep reproduction. The pituitary plays a connecting role in the HPT axis. However, little is known of their expression pattern and potential roles in the pituitary gland. To explore the potential lncRNAs that regulate the male sheep pituitary development and sexual maturation, we constructed immature and mature sheep pituitary cDNA libraries (three-month-old, TM, and nine-month-old, NM, respectively, n = 3) for lncRNA and mRNA high-throughput sequencing. Firstly, the expression of lncRNA and mRNA were comparatively analyzed. 2417 known lncRNAs and 1256 new lncRNAs were identified. Then, 193 differentially expressed (DE) lncRNAs and 1407 DE mRNAs were found in the pituitary between the two groups. Moreover, mRNA-lncRNA interaction network was constructed according to the target gene prediction of lncRNA and functional enrichment analysis. Five candidate lncRNAs and their targeted genes HSD17B12, DCBLD2, PDPK1, GPX3 and DLL1 that enriched in growth and reproduction related pathways were further filtered. Lastly, the interaction of candidate lncRNA TCONS_00066406 and its targeted gene HSD17B12 were validated in in vitro of sheep pituitary cells. Our study provided a systematic presentation of lncRNAs and mRNAs in male sheep pituitary, which revealed the potential role of lncRNA in male reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.M.); (Z.W.); (X.Y.); (J.Z.); (X.Z.); (F.W.)
| |
Collapse
|
17
|
LncRNA FTX Involves in the Nogo-66-Induced Inhibition of Neurite Outgrowth Through Regulating PDK1/PKB/GSK-3β Pathway. Cell Mol Neurobiol 2020; 40:1143-1153. [PMID: 32107749 DOI: 10.1007/s10571-020-00803-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/27/2020] [Indexed: 10/24/2022]
Abstract
Nogo-66 can inhibit neurite outgrowth, while its regulation mechanisms have not been fully elucidated. Recent studies prove that lncRNAs are involved in neurite outgrowth. This study was aimed to investigate whether lncRNA FTX was involved in Nogo-66-induced inhibition of neurite outgrowth and explore the potential mechanism. The expression of relative genes was detected by qRT-PCR and western blot. The function of FTX was determined by overexpression and knockdown techniques. The interaction between FTX and PDK1 was evaluated by RIP and RNA pull-down assays. FTX expression was downregulated by Nogo-66 in PC12 cells. Nogo-66-induced inhibition of neurite outgrowth was relieved by FTX overexpression. FTX bound to PDK1 protein to disturb the interaction between PDK1 and E3 ubiquitin ligase RNF126, thereby blocked the ubiquitination degradation of PDK1 and elevated PDK1 protein level. Mechanically, FTX involved in the Nogo-66-induced inhibition of neurite outgrowth through the PDK1/PKB/GSK-3β pathway. In SCI rats, FTX knockdown inhibited neurite outgrowth induced by the receptor antagonist of Nogo-66. The present results suggested that FTX took part in Nogo-66-inhibited neurite outgrowth, and FTX exerted its function through regulating PDK1/PKB/GSK-3β pathway.
Collapse
|
18
|
Li F, Liang J, Tong H, Zhu S, Tang D. Inhibition of microRNA-199a-5p ameliorates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in HT22 neurons by targeting Brg1 to activate Nrf2/HO-1 signalling. Clin Exp Pharmacol Physiol 2020; 47:1020-1029. [PMID: 31990992 DOI: 10.1111/1440-1681.13265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of neuronal survival during cerebral ischaemia/reperfusion injury. Accumulating evidence has shown that miR-199a-5p plays a crucial role in regulating apoptosis and survival in various cell types. However, whether miR-199a is involved in regulating neuronal survival during cerebral ischaemia/reperfusion injury remains unknown. In this study, we aimed to explore the biological role of miR-199a-5p in regulating neuronal injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R), an in vitro cellular model of cerebral ischaemia and reperfusion injury. We found that miR-199a-5p expression was significantly altered in neurons in response to OGD/R treatment. Overexpression of miR-199a-5p facilitated OGD/R-induced apoptosis and reactive oxygen species (ROS) production, whereas miR-199a-5p inhibition alleviated OGD/R-induced apoptosis and ROS production. Notably, our results identified Brahma-related gene 1 (Brg1) as a target gene of miR-199a-5p. Moreover, inhibition of miR-199a-5p promoted the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) signalling via targeting Brg1. However, silencing of Brg1 markedly reversed the miR-199a-5p inhibition-mediated neuroprotective effect. Taken together, our results suggest that downregulation of miR-199a-5p protects neurons from OGD/R-induced neuronal injury through upregulating Brg1 to activate Nrf2/HO-1 signalling. The miR-199a-5p/Brg1/Nrf2/HO-1 regulation axis may play an important role in regulating neuronal survival during cerebral ischaemic/reperfusion injury in vivo.
Collapse
Affiliation(s)
- Feng Li
- Anesthesiology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Liang
- Radiotherapy Department, Shaanxi Provincial Tumor Hospital, Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Hua Tong
- Anesthesiology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Zhu
- Anesthesiology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongfang Tang
- Neurosurgery Department, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| |
Collapse
|
19
|
Niu S, Ni Y, Niu T, Gao J. Knockdown PEG10 deteriorates H2O2-injury of PC-12 cells by targeting miR-34a-5p/TLX. Mol Immunol 2020; 118:1-8. [DOI: 10.1016/j.molimm.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/16/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
|
20
|
Gao Z, Zhao Y, He X, Leng Z, Zhou X, Song H, Wang R, Gao Z, Wang Y, Liu J, Niu B, Li H, Ouyang P, Chang S. Transplantation of sh-miR-199a-5p-Modified Olfactory Ensheathing Cells Promotes the Functional Recovery in Rats with Contusive Spinal Cord Injury. Cell Transplant 2020; 29:963689720916173. [PMID: 32252553 PMCID: PMC7586279 DOI: 10.1177/0963689720916173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) function as gene expression switches, and participate in diverse pathophysiological processes of spinal cord injury (SCI). Olfactory ensheathing cells (OECs) can alleviate pathological injury and facilitate functional recovery after SCI. However, the mechanisms by which OECs restore function are not well understood. This study aims to determine whether silencing miR-199a-5p would enhance the beneficial effects of the OECs. In this study, we measured miR-199a-5p levels in rat spinal cords with and without injury, with and without OEC transplants. Then, we transfected OECs with the sh-miR-199a-5p lentiviral vector to reduce miR-199a-5p expression and determined the effects of these OECs in SCI rats by Basso-Beattie-Bresnahan (BBB) locomotor scores, diffusion tensor imaging (DTI), and histological methods. We used western blotting to measure protein levels of Slit1, Robo2, and srGAP2. Finally, we used the dual-luciferase reporter assay to assess the relationship between miR-199-5p and Slit1, Robo2, and srGAP2 expression. We found that SCI significantly increased miR-199a-5p levels (P < 0.05), and OEC transplants significantly reduced miR-199a-5p expression (P < 0.05). Knockdown of miR-199a-5p in OECs had a better therapeutic effect on SCI rats, indicated by higher BBB scores and fractional anisotropy values on DTI, as well as histological findings. Reducing miR-199a-5p levels in transplanted OECs markedly increased spinal cord protein levels of Slit1, Robo2, and srGAP2. Our results demonstrated that transplantation of sh-miR-199a-5p-modified OECs promoted functional recovery in SCI rats, suggesting that miR-199a-5p knockdown was more beneficial to the therapeutic effects of OEC transplants. These findings provided new insights into miRNAs-mediated therapeutic mechanisms of OECs, which helps us to develop therapeutic strategies based on miRNAs and optimize cell therapy for SCI.
Collapse
Affiliation(s)
- Zhengchao Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yingjie Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xijing He
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zikuan Leng
- Department of Orthopaedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoqian Zhou
- Department of Radiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Hui Song
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Rui Wang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zhongyang Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yiqun Wang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jiantao Liu
- Department of Spine and Spinal Cord Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Binbin Niu
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Medical College, Xi’an, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Pengrong Ouyang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Su’e Chang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
21
|
The Emerging Role of lncRNAs in Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3467121. [PMID: 31737660 PMCID: PMC6815541 DOI: 10.1155/2019/3467121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a highly debilitating disease and is increasingly being recognized as an important global health priority. However, the mechanisms underlying SCI have not yet been fully elucidated, and effective therapies for SCI are lacking. Long noncoding RNAs (lncRNAs), which form a major class of noncoding RNAs, have emerged as novel targets for regulating several physiological functions and mediating numerous neurological diseases. Notably, gene expression profile analyses have demonstrated aberrant changes in lncRNA expression in rats or mice after traumatic or nontraumatic SCI. LncRNAs have been shown to be associated with multiple pathophysiological processes following SCI including inflammation, neural apoptosis, and oxidative stress. They also play a crucial role in the complications associated with SCI, such as neuropathic pain. At the same time, some lncRNAs have been found to be therapeutic targets for neural stem cell transplantation and hydrogen sulfide treatment aimed at alleviating SCI. Therefore, lncRNAs could be promising biomarkers for the diagnosis, treatment, and prognosis of SCI. However, further researches are required to clarify the therapeutic effects of lncRNAs on SCI and the mechanisms underlying these effects. In this study, we reviewed the current progress of the studies on the involvement of lncRNAs in SCI, with the aim of drawing attention towards their roles in this debilitating condition.
Collapse
|
22
|
Zhou ZB, Du D, Chen KZ, Deng LF, Niu YL, Zhu L. Differential Expression Profiles and Functional Predication of Circular Ribonucleic Acid in Traumatic Spinal Cord Injury of Rats. J Neurotrauma 2019; 36:2287-2297. [PMID: 30681027 DOI: 10.1089/neu.2018.6366] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Zhi-Bin Zhou
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Di Du
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kai-Zhe Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian-Fu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Long Niu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Long non-coding RNA Mirt2 relieves lipopolysaccharide-induced injury in PC12 cells by suppressing miR-429. J Physiol Biochem 2019; 75:403-413. [PMID: 31309444 DOI: 10.1007/s13105-019-00691-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play important roles in the pathogenesis of spinal cord injury (SCI). This study investigated the effects of lncRNA Mirt2 and miR-429 on lipopolysaccharide (LPS)-induced injuries in PC12 cells. Serum samples were collected from 36 patients with SCI and the healthy controls. The expression of lncRNA Mirt2 in serum samples was measured by qRT-PCR. The in vitro model of SCI was established by treating PC12 cells with LPS. The effects of lncRNA Mirt2 and miR-429 on the cell model were evaluated by CCK-8 assay, flow cytometry, western blot, qRT-PCR, and ELISA. Further, the activation of NF-κB and p38MAPK pathways was tested by western blot. LPS induced obvious cell injuries in PC12 cells, as cell viability was reduced, apoptosis rate was increased, caspase-3 and -9 were cleaved, and the release of TNF-α and IL-6 was induced. lncRNA Mirt2 was up-regulated in LPS-stimulated PC12 cells and serum samples derived from SCI patients. Overexpression of lncRNA Mirt2 protected PC12 cells against LPS-induced injuries. Further studies found that lncRNA Mirt2 acted as the molecular sponge of miR-429 and miR-34a-5p. lncRNA Mirt2 did not protect PC12 cells when miR-429 was overexpressed. Moreover, the inhibitory effects of lncRNA Mirt2 on NF-κB and p38MAPK pathways were abolished when miR-429 was overexpressed. lncRNA Mirt2 exerts protective effects in an in vitro model of SCI by down-regulating miR-429. This study shed light on the treatment of SCI by using the lncRNA-miRNA regulation network.
Collapse
|
24
|
Yao C, Yu B. Role of Long Noncoding RNAs and Circular RNAs in Nerve Regeneration. Front Mol Neurosci 2019; 12:165. [PMID: 31316349 PMCID: PMC6611387 DOI: 10.3389/fnmol.2019.00165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Nerve injuries may cause severe disability and affect the quality of life. It is of great importance to get a full understanding of the biological processes and molecular mechanisms underlying nerve injuries to find and target specific molecules for nerve regeneration. Numerous studies have shown that noncoding RNAs (ncRNAs) participate in diverse biological processes and diseases. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are two major groups of ncRNAs, which attract growing attention. The altered expression patterns of lncRNAs and circRNAs following nerve injury suggest that these ncRNAs might be associated with nerve regeneration. This review will give a brief introduction of lncRNAs and circRNAs. We then summarize the current studies on lncRNAs and circRNAs following peripheral nerve injury and spinal cord injury (SCI). Typical lncRNAs and circRNAs are introduced to illustrate the diverse molecular mechanisms for nerve regeneration. In addition, we also discuss some issues to be addressed in future investigations on lncRNAs and circRNAs.
Collapse
Affiliation(s)
- Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
25
|
Hu K, He C, Ren H, Wang H, Liu K, Li L, Liao Y, Liang M. LncRNA Gm2044 promotes 17β-estradiol synthesis in mpGCs by acting as miR-138-5p sponge. Mol Reprod Dev 2019; 86:1023-1032. [PMID: 31179605 DOI: 10.1002/mrd.23179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/16/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to play vital roles in mammalian reproduction. Our previous research revealed that lncRNA Gm2044 is highly expressed in mouse spermatocytes and regulates male germ cell function. The gene annotation database BioGPS shows that Gm2044 is not only highly expressed in testicular tissue but also in ovarian tissue, which suggests that Gm2044 may be involved in female reproductive development. In this study, we confirmed that lncRNA Gm2044 promotes 17β-estradiol synthesis in mouse pre-antral follicular granulosa cells (mpGCs). Furthermore, bioinformatics methods, western blot, and the luciferase assay proved that Gm2044 functions as a miR-138-5p sponge to inhibit the direct target of miR-138-5p, Nr5a1, which enhances 17β-estradiol synthesis through cyp19a1 activation. Taken together, our results provide an insight into the mechanistic roles of lncRNA Gm2044 for 17β-estradiol synthesis by acting as competing-endogenous RNAs to modulate the function of mpGCs. Studying the potential lncRNAs, which regulate estradiol release, will be beneficial for the diagnosis and treatment of steroid hormone-related disease.
Collapse
Affiliation(s)
- Ke Hu
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Chaofan He
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Huanhuan Ren
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Haiyan Wang
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Kuan Liu
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Leina Li
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yaping Liao
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Meng Liang
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| |
Collapse
|
26
|
Qin C, Liu CB, Yang DG, Gao F, Zhang X, Zhang C, Du LJ, Yang ML, Li JJ. Circular RNA Expression Alteration and Bioinformatics Analysis in Rats After Traumatic Spinal Cord Injury. Front Mol Neurosci 2019; 11:497. [PMID: 30692912 PMCID: PMC6339904 DOI: 10.3389/fnmol.2018.00497] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/28/2018] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury (SCI) is mostly caused by trauma. As primary mechanical injury is unavoidable in SCI, a focus on the pathophysiology and underlying molecular mechanisms of SCI-induced secondary injury is necessary to develop promising treatments for SCI patients. Circular RNAs (circRNAs) are associated with various diseases. Nevertheless, studies to date have not yet determined the functional roles of circRNAs in traumatic SCI. We examined circRNA expression profiles in the contused spinal cords of rats using microarray and quantitative reverse transcription-PCR (qRT-PCR) then predict their potential roles in post-SCI pathophysiology with bioinformatics. We found a total of 1676 differentially expressed circRNAs (fold change ≥ 2.0; P < 0.05) in spinal cord 3 days after contusion using circRNA microarray; 1261 circRNAs were significantly downregulated, whereas the remaining 415 were significantly upregulated. Then, five selected circRNAs, namely, rno_circRNA_005342, rno_circRNA_015513, rno_circRNA_002948, rno_circRNA_006096, and rno_circRNA_013017 were all significantly downregulated in the SCI group after verification by qRT-PCR, demonstrating a similar expression pattern in both microarray and PCR data. The next section of the study was concerned with the prediction of circRNA/miRNA/mRNA interactions using bioinformatics analysis. In the final part of the study, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses indicated carbohydrate metabolic process was one of the most significant enrichments and meaningful terms after GO analysis, and the top two signaling pathways affected by the circRNAs-miRNAs axes were the AMP-activated protein kinase signaling pathway and the peroxisome related pathway. In summary, this study showed an altered circRNA expression pattern that may be involved in physiological and pathological processes in rats after traumatic SCI, providing deep insights into numerous possibilities for SCI treatment targets by regulating circRNAs.
Collapse
Affiliation(s)
- Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
27
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
28
|
Zhang X, Yang Q, Ding T, Xu J, Yan Z, Men Y, Xin W, Xu H. Retracted Article: Gm5820, an antisense RNA of FGF1, suppresses FGF1 expression at the posttranscriptional level to inactivate the ERK/STAT3 pathway and alleviates neuropathic pain in mice. RSC Adv 2019; 9:28364-28376. [PMID: 35529622 PMCID: PMC9071159 DOI: 10.1039/c9ra03791h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence reveals that lncRNAs play important roles in various pathological processes, but precious little indicates their regulatory role in neuropathic pain.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pain
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Qing Yang
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Tao Ding
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Jingyu Xu
- Department of Pain
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Zeng Yan
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Yanhua Men
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Wenqi Xin
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| | - Haixia Xu
- Department of Anesthesiology
- Huaihe Hospital of Henan University
- Kaifeng 475000
- China
| |
Collapse
|
29
|
Bao N, Fang B, Lv H, Jiang Y, Chen F, Wang Z, Ma H. Upregulation of miR-199a-5p Protects Spinal Cord Against Ischemia/Reperfusion-Induced Injury via Downregulation of ECE1 in Rat. Cell Mol Neurobiol 2018; 38:1293-1303. [PMID: 29948551 DOI: 10.1007/s10571-018-0597-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/31/2018] [Indexed: 12/18/2022]
Abstract
Ischemia-reperfusion (I/R)-induced spinal cord injury can cause apoptotic damage and subsequently act as a blood-spinal cord barrier damage. MicroRNAs (miRNAs) contributed to the process of I/R injury by regulating their target mRNAs. miR-199a-5p is involved in brain and heart I/R injury; however, its function in the spinal cord is not yet completely clarified. In this study, we investigated the role of miR-199a-5p on spinal cord I/R via the endothelin-converting enzyme 1, especially the apoptosis pathway. In the current study, the rat spinal cord I/R injury model was established, and the Basso Beattie Bresnahan scoring, Evans blue staining, HE staining, and TUNEL assay were used to assess the I/R-induced spinal cord injury. The differentially expressed miRNAs were screened using microarray. miR-199a-5p was selected by unsupervised hierarchical clustering analysis. The dual-luciferase reporter assay was used for detecting the regulatory effects of miR-199a-5p on ECE1. In addition, neuron expression was detected by immunostaining assay, while the expressions of p-ERK, ERK, p-JNK, JNK, caspase-9, Bcl-2, and ECE1 were evaluated by Western blot. The results indicated the successful establishment of the I/R-induced spinal cord injury model; the I/R induced the damage to the lower limb motor. Furthermore, 18 differentially expressed miRNAs were detected in the I/R group compared to the sham group, and miR-199a-5p protected the rat spinal cord injury after I/R. Moreover, miR-199a-5p negatively regulated ECE1, and silencing the ECE1 gene also protected the rat spinal cord injury after I/R. miR-199a-5p or silencing of ECE1 also regulated the expressions of caspase-9, Bcl-2, p-JNK, p-ERK, and ECE1 in rat spinal cord injury after I/R. Therefore, we demonstrated that miR-199a-5p might protect the spinal cord against I/R-induced injury by negatively regulating the ECE1, which could aid in developing new therapeutic strategies for I/R-induced spinal cord injury.
Collapse
Affiliation(s)
- Ning Bao
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
- Shenyang Women's and Children's Hospital, No. 87 Danan Street, Shenhe Dinstrict, Shenyang, Liaoning, People's Republic of China
| | - Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Huangwei Lv
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Yanhua Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Fengshou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Zhilin Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
30
|
Fan J, Zhou Q, Li Y, Song X, Hu J, Qin Z, Tang J, Tao T. Profiling of Long Non-coding RNAs and mRNAs by RNA-Sequencing in the Hippocampi of Adult Mice Following Propofol Sedation. Front Mol Neurosci 2018; 11:91. [PMID: 29628875 PMCID: PMC5876304 DOI: 10.3389/fnmol.2018.00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Propofol is a frequently used intravenous anesthetic agent. The impairment caused by propofol on the neural system, especially the hippocampus, has been widely reported. However, the molecular mechanism underlying the effects of propofol on learning and memory functions in the hippocampus is still unclear. In the present study we performed lncRNA and mRNA analysis in the hippocampi of adult mice, after propofol sedation, through RNA-Sequencing (RNA-Seq). A total of 146 differentially expressed lncRNAs and 1103 mRNAs were identified. Bioinformatics analysis, including gene ontology (GO) analysis, pathway analysis and network analysis, were done for the identified dysregulated genes. Pathway analysis indicated that the FoxO signaling pathway played an important role in the effects of propofol on the hippocampus. Finally, four lncRNAs and three proteins were selected from the FoxO-related network for further validation. The up-regulation of lncE230001N04Rik and the down-regulation of lncRP23-430H21.1 and lncB230206L02Rik showed the same fold change tendencies but changes in Gm26532 were not statistically significant in the RNA-Seq results, following propofol sedation. The FoxO pathway-related proteins, PI3K and AKT, are up-regulated in propofol-exposed group. FoxO3a is down-regulated at both mRNA and protein levels. Our study reveals that propofol sedation can influence the expression of lncRNAs and mRNAs in the hippocampus, and bioinformatics analysis have identified key biological processes and pathways associated with propofol sedation. Cumulatively, our results provide a framework for further study on the role of lncRNAs in propofol-induced or -related neurotoxicity, particularly with regards to hippocampus-related dysfunction.
Collapse
Affiliation(s)
- Jun Fan
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Quan Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuling Song
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tao Tao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Shi Z, Pan B, Feng S. The emerging role of long non-coding RNA in spinal cord injury. J Cell Mol Med 2018; 22:2055-2061. [PMID: 29392896 PMCID: PMC5867120 DOI: 10.1111/jcmm.13515] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a significant health burden worldwide which causes permanent neurological deficits, and there are approximately 17,000 new cases each year. However, there are no effective and current treatments that lead to functional recovery because of the limited understanding of the pathogenic mechanism of SCI. In recent years, the biological roles of long non-coding RNAs (lncRNAs) in SCI have attracted great attention from the researchers all over the world, and an increasing number of studies have investigated the regulatory roles of lncRNAs in SCI. In this review, we summarized the biogenesis, classification and function of lncRNAs and focused on the investigations on the roles of lncRNAs involved in the pathogenic processes of SCI, including neuronal loss, astrocyte proliferation and activation, demyelination, microglia activation, inflammatory reaction and angiogenesis. This review will help understand the molecular mechanisms of SCI and facilitate the potential use of lncRNAs as diagnostic markers and therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopaedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
32
|
Li H, Lin L, Li L, Zhou L, Zhang Y, Hao S, Ding Z. Exosomal small RNA sequencing uncovers the microRNA dose markers for power frequency electromagnetic field exposure. Biomarkers 2018; 23:315-327. [PMID: 29297241 DOI: 10.1080/1354750x.2018.1423707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The potential health risks caused by power frequency electromagnetic field (PFEMF) have led to increase public health concerns. However, the diagnosis and prognosis remain challenging in determination of exact dose of PFEMF exposure. MATERIALS AND METHODS Mice were exposed to different magnetic doses of PFEMF for the following isolation of serum exosomes, microRNAs (miRNAs) extraction and small RNA sequencing. After small RNA sequencing, bioinformatic analysis, quantitative real-time PCR (qRT-PCR) validation and serum exosomal miRNA biomarkers were determined. RESULTS Significantly changed serum exosomal miRNA as biomarkers of 0.1, 0.5, 2.5 mT and common PFEMF exposure were confirmed. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) pathway analysis of the downstream target genes of the above-identified exosomal miRNA markers indicated that, exosomal miRNA markers were predicted to be involved in critical pathophysiological processes of neural system and cancer- or other disease-related signalling pathways. CONCLUSIONS Aberrantly-expressed serum exosomal miRNAs, including miR-128-3p for 0.1 mT, miR-133a-3p for 0.5 mT, miR-142a-5p for 2.5 mT, miR-218-5p and miR-199a-3p for common PFEMF exposure, suggested a series of informative markers for not only identifying the exact dose of PFEMF exposure, also consolidating the base for future clinical intervention.
Collapse
Affiliation(s)
- Hualiang Li
- a Electric Power Research Institute of Guangdong Power Grid , Guangzhou , PR China
| | - Lin Lin
- b Department of Obstetrics , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , PR China
| | - Li Li
- a Electric Power Research Institute of Guangdong Power Grid , Guangzhou , PR China
| | - Liang Zhou
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Ying Zhang
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Shuai Hao
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Zhenhua Ding
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| |
Collapse
|