3
|
Xu H, Liu X, Jia Y, Dong F, Xu J, Wu X, Yang Y, Zheng Y. Fipronil-induced toxic effects in zebrafish (Danio rerio) larvae by using digital gene expression profiling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:550-559. [PMID: 29800848 DOI: 10.1016/j.scitotenv.2018.05.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 05/07/2023]
Abstract
Fipronil residue has caused widespread concern around the world, especially after the recent "toxic eggs" event in seven European countries. To evaluate the effects of fipronil on vertebrates, zebrafish larvae were used as an animal model to examine the lethal effect, developmental phenotypes at high doses, and possible mechanisms of toxicity by employing digital gene expression (DGE) profiling at environmentally relevant doses. The results of acute toxicity test indicated that treatment with fipronil from 75 h post-fertilization (hpf) led to the death of larvae with a 96-h LC50 value of 459 μg/L, as well as abnormal development including bent spine and shortened body length. Besides, we obtained high-quality-sequencing DGE profilings at fipronil concentrations of 0.5, 5, and 50 μg/L, respectively. The results revealed that 44 differentially expressed genes, 10 GO terms, and 3 KEGG pathways were overlapped among the three concentrations. MIDN, one of the 44 differentially expressed genes, showed dose-dependent responses at the transcriptional level, indicating that it was possibly a potential biomarker to reflect fipronil toxicity in zebrafish. Furthermore, we presumed that the changing transcriptional level of AP-1 family was possibly a reason for bent spine and shortened body length in larvae exposed to fipronil. Concurrently, altered abundance of transcripts of the ELOVL family in a key step of fatty acid elongation could possibly lead to the accumulation of long-chain fatty acids. Collectively, our results suggested that exposure to fipronil caused lethal and developmental toxicity in zebrafish larvae, and demonstrated the need for a comprehensive understanding of the potential mechanisms of fipronil toxicity due to fipronil's frequent presence in the environment and its potential threat to human health.
Collapse
Affiliation(s)
- Hanqing Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yang Jia
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
4
|
Ji YX, Huang Z, Yang X, Wang X, Zhao LP, Wang PX, Zhang XJ, Alves-Bezerra M, Cai L, Zhang P, Lu YX, Bai L, Gao MM, Zhao H, Tian S, Wang Y, Huang ZX, Zhu XY, Zhang Y, Gong J, She ZG, Li F, Cohen DE, Li H. The deubiquitinating enzyme cylindromatosis mitigates nonalcoholic steatohepatitis. Nat Med 2018; 24:213-223. [PMID: 29291351 DOI: 10.1038/nm.4461] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. Lack of effective pharmacotherapies for NASH is largely attributable to an incomplete understanding of its pathogenesis. The deubiquitinase cylindromatosis (CYLD) plays key roles in inflammation and cancer. Here we identified CYLD as a suppressor of NASH in mice and in monkeys. CYLD is progressively degraded upon interaction with the E3 ligase TRIM47 in proportion to NASH severity. We observed that overexpression of Cyld in hepatocytes concomitantly inhibits lipid accumulation, insulin resistance, inflammation and fibrosis in mice with NASH induced in an experimental setting. Mechanistically, CYLD interacts directly with the kinase TAK1 and removes its K63-linked polyubiquitin chain, which blocks downstream activation of the JNK-p38 cascades. Notably, reconstitution of hepatic CYLD expression effectively reverses disease progression in mice with dietary or genetically induced NASH and in high-fat diet-fed monkeys predisposed to metabolic syndrome. Collectively, our findings demonstrate that CYLD mitigates NASH severity and identify the CYLD-TAK1 axis as a promising therapeutic target for management of the disease.
Collapse
Affiliation(s)
- Yan-Xiao Ji
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xia Yang
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xiaozhan Wang
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling-Ping Zhao
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Pi-Xiao Wang
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Michele Alves-Bezerra
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Lin Cai
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yue-Xin Lu
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Lan Bai
- Institute of Model Animal of Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mao-Mao Gao
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Huan Zhao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yong Wang
- Institute of Model Animal of Wuhan University, Wuhan, China
| | | | - Xue-Yong Zhu
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yan Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Gong
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Li
- Basic Medical School, Wuhan University, Wuhan, China
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Hongliang Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Jiang J, Luo Y, Qin W, Ma H, Li Q, Zhan J, Zhang Y. Electroacupuncture Suppresses the NF-κB Signaling Pathway by Upregulating Cylindromatosis to Alleviate Inflammatory Injury in Cerebral Ischemia/Reperfusion Rats. Front Mol Neurosci 2017; 10:363. [PMID: 29163038 PMCID: PMC5681846 DOI: 10.3389/fnmol.2017.00363] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Electroacupuncture (EA) may reduce inflammatory injury by inhibiting nuclear factor-kappa B (NF-κB) signaling pathway activation after ischemic stroke. Thus, we explored temporal and spatial expression of cylindromatosis (CYLD), a negative feedback inhibitor of the NF-κB signaling pathway, to learn whether CYLD is essential for EA and reduction of inflammatory injury after focal cerebral ischemia/reperfusion. A middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in male Sprague-Dawley (SD) rats and CYLD gene interference was used to investigate a potential role of neuroprotection. Rats were treated with EA (1 mA, 20 Hz for 5 min, 2 Hz for 30 min) at Baihui (GV 20), Hegu (LI 4) and Taichong (LR 3) acupoints, once daily, beginning 2 h after focal cerebral ischemia. Microglial activation and co-expression of CYLD and NF-κB were measured with immunofluorescence. Neuronal CX3CL1 expression was assayed to investigate the role of EA in the interaction between neurons and microglia via upregulation of CYLD. Then, CYLD, NF-κB p65 and p-IκBα protein expression was measured with Western blot. CYLD was mainly expressed in neurons of the peri-ischemic area after MCAO/R in rats and EA upregulated CYLD mRNA and protein from 24 to 72 h after focal cerebral ischemia/reperfusion. In addition, CYLD overexpression was positively correlated to neurobehavior and negatively connected with infarct volume and pro-inflammatory cytokines (TNF-α and IL-1β). Upregulation of CYLD by EA prevented NF-κB nuclear translocation and inhibition of neuronal CX3CL1 expression, which repressed activation of microglia. Finally, CYLD silencing significantly weakened suppression of the NF-κB signaling pathway by EA. In conclusion, upregulation of CYLD may underlie how EA could alleviate inflammatory injury after focal cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| | - Wenyi Qin
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| | - Qiongli Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| | - Jian Zhan
- Department of Neurology, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurology, Chongqing Medical University, Chongqing, China
| |
Collapse
|