1
|
Mustafá ER, Cordisco González S, Damian M, Cantel S, Denoyelle S, Wagner R, Schiöth HB, Fehrentz JA, Banères JL, Perelló M, Raingo J. LEAP2 Impairs the Capability of the Growth Hormone Secretagogue Receptor to Regulate the Dopamine 2 Receptor Signaling. Front Pharmacol 2021; 12:712437. [PMID: 34447311 PMCID: PMC8383165 DOI: 10.3389/fphar.2021.712437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The growth hormone secretagogue receptor (GHSR) signals in response to ghrelin, but also acts via ligand-independent mechanisms that include either constitutive activation or interaction with other G protein-coupled receptors, such as the dopamine 2 receptor (D2R). A key target of GHSR in neurons is voltage-gated calcium channels type 2.2 (CaV2.2). Recently, the liver-expressed antimicrobial peptide 2 (LEAP2) was recognized as a novel GHSR ligand, but the mechanism of action of LEAP2 on GHSR is not well understood. Here, we investigated the role of LEAP2 on the canonical and non-canonical modes of action of GHSR on CaV2.2 function. Using a heterologous expression system and patch-clamp recordings, we found that LEAP2 impairs the reduction of CaV2.2 currents induced by ghrelin-evoked and constitutive GHSR activities, acting as a GHSR antagonist and inverse agonist, respectively. We also found that LEAP2 prevents GHSR from modulating the effects of D2R signaling on CaV2.2 currents, and that the GHSR-binding N-terminal region LEAP2 underlies these effects. Using purified labeled receptors assembled into lipid nanodiscs and Forster Resonance Energy Transfer (FRET) assessments, we found that the N-terminal region of LEAP2 stabilizes an inactive conformation of GHSR that is dissociated from Gq protein and, consequently, reverses the effect of GHSR on D2R-dependent Gi activation. Thus, our results provide critical molecular insights into the mechanism mediating LEAP2 modulation of GHSR.
Collapse
Affiliation(s)
- Emilio R Mustafá
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Santiago Cordisco González
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Renaud Wagner
- Plateforme IMPReSs, CNRS UMR7242, Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg, Strasbourg, France
| | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biothechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), Université Montpellier, CNRS, Montpellier, France
| | - Mario Perelló
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata (UNLP)], La Plata, Argentina
| |
Collapse
|
2
|
Shemsi AM, Khanday FA, Qurashi A, Khalil A, Guerriero G, Siddiqui KS. Site-directed chemically-modified magnetic enzymes: fabrication, improvements, biotechnological applications and future prospects. Biotechnol Adv 2019; 37:357-381. [DOI: 10.1016/j.biotechadv.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/13/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023]
|