1
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
2
|
Shang F, Lan J, Wang L, Liu W, Chen Y, Chen J, Ha NC, Quan C, Nam KH, Xu Y. Crystal structure of the Siderophore-interacting protein SIP from Aeromonas hydrophila. Biochem Biophys Res Commun 2019; 519:23-28. [PMID: 31477273 DOI: 10.1016/j.bbrc.2019.08.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022]
Abstract
Siderophores acquire iron from hosts under iron-limiting conditions and play an essential role in the survival of microorganisms. Siderophore-interacting proteins (SIPs) from microbes release iron from the siderophore complex by reducing ferric iron to ferrous iron, but the molecular mechanism of iron reduction remains unclear. To better understand the molecular mechanism of SIPs, we herein report the crystal structure of Aeromonas hydrophila SIP (AhSIP) in complex with flavin adenine dinucleotide (FAD) as a cofactor. AhSIP consists of an N-terminal FAD binding domain and a C-terminal NADH binding domain, which are connected by a linker region. AhSIP showed unique structural differences in the orientation of the cofactor binding lobes when compared with SIP homologs. This study identified a cluster of three basic residues (Lys48, His259 and Arg262) in AhSIP distributed around a potential substrate binding pocket. In addition, AhSIP, containing the NADH binding motif E(L)VL-X3-GE, belongs to the group I subfamily. Our results show the diverse cofactor and substrate binding sites of the SIP family.
Collapse
Affiliation(s)
- Fei Shang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Lan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Lulu Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China; School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Wei Liu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Yuanyuan Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jinli Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| | - Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
3
|
Jo I, Kim JS, Xu Y, Hyun J, Lee K, Ha NC. Recent paradigm shift in the assembly of bacterial tripartite efflux pumps and the type I secretion system. J Microbiol 2019; 57:185-194. [PMID: 30806976 DOI: 10.1007/s12275-019-8520-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/15/2023]
Abstract
Tripartite efflux pumps and the type I secretion system of Gram-negative bacteria are large protein complexes that span the entire cell envelope. These complexes expel antibiotics and other toxic substances or transport protein toxins from bacterial cells. Elucidating the binary and ternary complex structures at an atomic resolution are crucial to understanding the assembly and working mechanism. Recent advances in cryoelectron microscopy along with the construction of chimeric proteins drastically shifted the assembly models. In this review, we describe the current assembly models from a historical perspective and emphasize the common assembly mechanism for the assembly of diverse tripartite pumps and type I secretion systems.
Collapse
Affiliation(s)
- Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Sik Kim
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, P. R. China
| | - Jaekyung Hyun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Shang F, Chen J, Wang L, Jin L, Zou L, Bu T, Dong Y, Ha NC, Nam KH, Quan C, Xu Y. Crystal structure of the nicotinamidase/pyrazinamidase PncA from Bacillus subtilis. Biochem Biophys Res Commun 2018; 503:2906-2911. [PMID: 30107912 DOI: 10.1016/j.bbrc.2018.08.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
The nicotinamidase/pyrazinamidase PncA is a member of a large family of hydrolase enzymes that catalyze the deamination of nicotinamide to nicotinic acid. PncA also functions as a pyrazinamidase in a wide variety of eubacteria and is an essential coenzyme in many cellular redox reactions in living systems. We report the crystal structure of substrate-free PncA from Bacillus subtilis (BsPncA) at 2.0 Å resolution to improve our understanding of the PncA family. The structure of BsPncA consists of an α/β domain and a subdomain. The subdomain of BsPncA has a different conformation than that of PncA enzymes from other organisms. The B-factor analysis revealed a rigid structure of the α/β domain, while the subdomain is highly flexible. Both dimers and tetramers were observed in BsPncA protein crystals, but only dimers were observed in solution. Our results provide useful information that will further enhance our understanding of the molecular functions of PncA family members.
Collapse
Affiliation(s)
- Fei Shang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jinli Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Lulu Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China; School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Liming Jin
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Linhai Zou
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Tingting Bu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
5
|
Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective. Front Microbiol 2018; 9:950. [PMID: 29892271 PMCID: PMC5985334 DOI: 10.3389/fmicb.2018.00950] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.
Collapse
Affiliation(s)
- Nicholas P Greene
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elise Kaplan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Allister Crow
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Jo I, Hong S, Lee M, Song S, Kim JS, Mitra AK, Hyun J, Lee K, Ha NC. Stoichiometry and mechanistic implications of the MacAB-TolC tripartite efflux pump. Biochem Biophys Res Commun 2017; 494:668-673. [PMID: 29061301 DOI: 10.1016/j.bbrc.2017.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
The MacAB-TolC tripartite efflux pump is involved in resistance to macrolide antibiotics and secretion of protein toxins in many Gram-negative bacteria. The pump spans the entire cell envelope and operates by expelling substances to extracellular space. X-ray crystal and electron microscopic structures have revealed the funnel-like MacA hexamer in the periplasmic space and the cylindrical TolC trimer. Nonetheless, the inner membrane transporter MacB still remains ambiguous in terms of its oligomeric state in the functional complex. In this study, we purified a stable binary complex using a fusion protein of MacA and MacB of Escherichia coli, and then supplemented MacA to meet the correct stoichiometry between the two proteins. The result demonstrated that MacB is a homodimer in the complex, which is consistent with results from the recent complex structure using cryo-electron microscopy single particle analysis. Structural comparison with the previously reported MacB periplasmic domain structure suggests a molecular mechanism for regulation of the activity of MacB via an interaction between the MacB periplasmic domain and MacA. Our results provide a better understanding of the tripartite pumps at the molecular level.
Collapse
Affiliation(s)
- Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokho Hong
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Saemee Song
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Sik Kim
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Alok K Mitra
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jaekyung Hyun
- Electron Microscopy Research Center, Korea Basic Science Institute, Chungcheongbukdo 28119, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|