1
|
Ding S, Wang X, Ma F, Cai Z, Li X, Gao J, Chen X, Wu L. Effect and Mechanism of Mycobacterium avium MAV-5183 on Apoptosis of Mouse Ana-1 Macrophages. Cell Biochem Biophys 2024; 82:885-894. [PMID: 38430410 DOI: 10.1007/s12013-024-01239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
To investigate the effects and mechanisms of Mycobacterium avium MAV-5183 protein on apoptosis in mouse Ana-1 macrophages. A pET-21a-MAV-5183 recombinant plasmid was constructed. The recombinant MAV-5183 protein was cloned, expressed, purified, and identified using an anti-His-tagged antibody. Rabbits were immunized to obtain antiserum, and its potency and immunoreactivity were assessed through WB. Mouse Ana-1 macrophages were incubated with varying concentrations of MAV-5183 protein. Flow cytometry, following ANNEXIN V-FITC/PI double staining, detected apoptosis. Western Blot analysis was conducted to identify apoptosis-related molecules Caspase-9/8/3 and vesicle-related molecules ASC, NLRP3, and Cleaved-casp1. ELISA measured TNF-α and IL-6 levels in the culture supernatant. LDH activity and ROS levels were analyzed separately. RT-qPCR measured mRNA levels of Caspase-9/8/3, ASC, NLRP3, Caspase-1, IL-1β, Bax, MAPK-p38, Bcl-2, TNF-α, and IL-6. MAV-5183 protein was successfully cloned, purified, and identified. In in vitro studies on Ana-1 macrophages, MAV-5183 protein increased the expression of Caspase-9/8/3, ASC, NLRP3 (P < 0.01), induced ROS secretion (P < 0.05), and promoted inflammatory cytokine secretion (TNF-α, IL-6, P < 0.0001); however, it did not significantly affect LDH (P > 0.05). MAV-5183 also induced apoptosis in Ana-1 macrophages (P < 0.05). RT-qPCR results indicated a significant increase in mRNA expression of Caspase-9/8/3, ASC, NLRP3, TNF-α, IL-6, MAPK-p38, and pro-apoptotic factor Bax (P < 0.01), with no significant effect on Bcl-2 and IL-1β mRNA (P > 0.05). The data indicate that MAV-5183 induces macrophage apoptosis through a caspase-dependent pathway and promotes inflammatory cytokine secretion via ROS.
Collapse
Affiliation(s)
- Shoupeng Ding
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
- Department of Laboratory Medicine, Gutian County Hospital, Gutian, 352200, China
| | - Xuan Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
- School of Clinical Medicine, Nanchang University Queen Mary School, Nanchang, 330031, China
| | - Fengqian Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Zihan Cai
- Department of Medical Laboratory, Siyang Hospital, Suqian, 237000, China
| | - Xiangfang Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Jinghua Gao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Xiaowen Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China
| | - Lixian Wu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali, 671000, China.
| |
Collapse
|
2
|
Jaiswal S, Kumar S, Velarde de la Cruz E. Exploring the role of the protein tyrosine kinase a (PtkA) in mycobacterial intracellular survival. Tuberculosis (Edinb) 2023; 142:102398. [PMID: 37657276 DOI: 10.1016/j.tube.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Mycobacterium tuberculosis (Mtb) continues to define new paradigms of host-pathogen interaction. There are several host proteins known which are regulated by Mtb infection. The proteins which regulate host biological processes like apoptosis, cell processes, stress proteins, metabolic enzymes, etc. are targeted by the pathogens. Mtb proteins interact directly or indirectly with host proteins and play an important role in their persistence and intracellular growth. Mtb is an intracellular pathogen. It remains dormant for years within the host without activating its immune system. Mtb Protein tyrosine kinase (PtkA) regulates host anti-apoptotic protein, metabolic enzymes, and several other proteins that are involved in stress regulation, cell proliferation, protein folding, DNA repair, etc. PtkA regulates other mycobacterial proteins and plays an important role in its growth and survival. Here we summarized the current knowledge of PtkA and reviewed its role in mycobacterial intracellular survival as it regulates several other mycobacterial proteins and host proteins. PtkA regulates PtpA secretion which is essential for mycobacterial virulence and could be used as an attractive drug target.
Collapse
Affiliation(s)
- Swati Jaiswal
- University of Massachusetts Chan Medical School, Worcester, United States.
| | | | | |
Collapse
|
3
|
Li G, Park JN, Park HJ, Suh JH, Choi HS. High Cholesterol-Induced Bone Loss Is Attenuated by Arctiin via an Action in Osteoclasts. Nutrients 2022; 14:4483. [PMID: 36364745 PMCID: PMC9657919 DOI: 10.3390/nu14214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 10/29/2023] Open
Abstract
High cholesterol-induced bone loss is highly associated with oxidative stress, which leads to the generation of oxysterols, such as 7-ketocholesterol (7-KC). Here, we conducted in vivo and in vitro experiments to determine whether arctiin prevents high cholesterol diet-induced bone loss by decreasing oxidative stress. First, arctiin was orally administered to atherogenic diet (AD)-fed C57BL/6J male mice at a dose of 10 mg/kg for 6 weeks. Micro-computerized tomography (μCT) analysis showed that arctiin attenuated AD-induced boss loss. For our in vitro experiments, the anti-oxidant effects of arctiin were evaluated in 7-KC-stimulated osteoclasts (OCs). Arctiin decreased the number and activity of OCs and inhibited autophagy by disrupting the nuclear localization of transcription factor EB (TFEB) and downregulating the oxidized TFEB signaling pathway in OCs upon 7-KC stimulation. Furthermore, arctiin decreased the levels of reactive oxygen species (ROS) by enhancing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase, and heme oxygenase 1 (HO-1), all of which affected OC differentiation. Conversely, silencing of Nrf2 or HO-1/catalase attenuated the effects of arctiin on OCs. Collectively, our findings suggested that arctiin attenuates 7-KC-induced osteoclastogenesis by increasing the expression of ROS scavenging genes in the Nrf2/HO-1/catalase signaling pathway, thereby decreasing OC autophagy. Moreover, arctiin inhibits the oxidation and nuclear localization of TFEB, thus protecting mice from AD-induced bone loss. Our findings thus demonstrate the therapeutic potential of arctiin for the prevention of cholesterol-induced bone loss.
Collapse
Affiliation(s)
- Guoen Li
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea
| | - Jung-Nam Park
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea
| | - Hyun-Jung Park
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea
| | - Jae-Hee Suh
- Department of Pathology, Ulsan University Hospital, Ulsan 44030, Korea
| | - Hye-Seon Choi
- Department of Biological Sciences (BK21 Program), University of Ulsan, Ulsan 44610, Korea
| |
Collapse
|
4
|
Tanemura H, Masuda K, Okumura T, Takagi E, Kajihara D, Kakihara H, Nonaka K, Ushioda R. Development of a stable antibody production system utilizing an Hspa5 promoter in CHO cells. Sci Rep 2022; 12:7239. [PMID: 35610229 PMCID: PMC9130236 DOI: 10.1038/s41598-022-11342-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used for manufacturing antibody drugs. We attempted to clone a novel high-expression promoter for producing monoclonal antibodies (mAbs) based on transcriptome analysis to enhance the transcriptional abundance of mAb genes. The efficacy of conventional promoters such as CMV and hEF1α decrease in the latter phase of fed-batch cell culture. To overcome this, we screened genes whose expression was maintained or increased throughout the culture period. Since CHO cells have diverse genetic expression depending on the selected clone and culture medium, transcriptome analysis was performed on multiple clones and culture media anticipated to be used in mAb manufacturing. We thus acquired the Hspa5 promoter as a novel high-expression promoter, which uniquely enables mAb productivity per cell to improve late in the culture period. Productivity also improved for various IgG subclasses under Hspa5 promoter control, indicating this promoter’s potential universal value for mAb production. Finally, it was suggested that mAb production with this promoter is correlated with the transcription levels of endoplasmic reticulum stress-related genes. Therefore, mAb production utilizing the Hspa5 promoter might be a new method for maintaining protein homeostasis and achieving stable expression of introduced mAb genes during fed-batch culture.
Collapse
Affiliation(s)
- Hiroki Tanemura
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Kenji Masuda
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Takeshi Okumura
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Eri Takagi
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Daisuke Kajihara
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Hirofumi Kakihara
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Koichi Nonaka
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto City, 603-8555, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto City, 603-8555, Japan.
| |
Collapse
|
5
|
Dubey RK, Dhamija E, Kumar Mishra A, Soam D, Mohanrao Yabaji S, Srivastava K, Srivastava KK. Mycobacterial origin protein Rv0674 localizes into mitochondria, interacts with D-loop and regulates OXPHOS for intracellular persistence of Mycobacterium tuberculosis. Mitochondrion 2020; 57:241-256. [PMID: 33279599 DOI: 10.1016/j.mito.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) employs diverse strategies to survive inside the host macrophages. In this study, we have identified a conserved hypothetical protein of Mtb; Rv0674, which is present in the mitochondria of the host cell. The genetic knock-out of rv0674 (Mtb-KO) showed increased growth of Mtb. The intracellular infection with recombinant Mycobacterium smegmatis (MSMEG) expressing Rv0674 (MS_Rv0674), established that the protein is involved in promoting the apoptotic cell death of the macrophage. To investigate the mechanism incurred in mitochondria, we observed that the protein physically interacts with the control region (D-loop) of the mitochondrial DNA (LSP and HSP promoters of the loop) of the macrophages and facilitates the increased expression of mRNA in all the complexes of mitochondrial encoded OXPHOS subunits. The changes in OXPHOS levels corroborated with the ATP synthesis, mitochondrial membrane potential and superoxide production. The infection with MS_Rv0674 confirmed the role of this protein in effecting the intracellular infection. The fluorescent and confocal microscopy confirmed that the protein is localized in the mitochondria of infected macrophages and in the cells of BAL of TB patients. Together these findings indicate towards the novel function of the protein which is unlike to the earlier established mechanisms of mycobacterial physiology.
Collapse
Affiliation(s)
- Rikesh Kumar Dubey
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ekta Dhamija
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Alok Kumar Mishra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dheeraj Soam
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shivraj Mohanrao Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research, India; Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | | | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research, India; Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
6
|
Liu H, Zhu T, Li Q, Xiong X, Wang J, Zhu X, Zhou X, Zhang L, Zhu Y, Peng Y, Chen Y, Hu C, Chen H, Guo A. TRIM25 upregulation by Mycobacterium tuberculosis infection promotes intracellular survival of M.tb in RAW264.7 cells. Microb Pathog 2020; 148:104456. [PMID: 32810556 DOI: 10.1016/j.micpath.2020.104456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Tripartite motif 25 (TRIM25) is a TRIM family member which is involved in innate immunity. However, its role in the modulation of host defense against Mycobacterium tuberculosis (M.tb) infection has not been investigated. Therefore, this study aimed to demonstrate the significance of TRIM25 in the regulation of macrophage responses to M.tb infection. TRIM25 was found to be significantly overexpressed (3.476-fold) in peripheral blood mononuclear cells (PBMCs) of 67 patients with pulmonary tuberculosis compared with 48 healthy controls. TRIM25 expression was enhanced following M.tb infection of RAW264.7 cells, a macrophage cell line. Overexpression of TRIM25 in M.tb-infected RAW264.7 cells led to a significant increase in phosphorylated p38 levels; however, the production of IL-6, IL-1β, and TNF-α were significantly reduced. Finally, M.tb intracellular survival increased by 90% at 12 h post-infection (PI) (p < 0.01). To validate the previous results, TRIM25 levels in M.tb-infected RAW264.7 macrophages were down-regulated using small interfering RNA (siRNA). Therefore, it was concluded that TRIM25 promotes intracellular survival of M.tb in RAW264.7 cells, likely by enhancing p38 pathways and thereby inhibiting the production of proinflammatory cytokines. These results contribute to the further understanding of the host defense against M.tb infection.
Collapse
Affiliation(s)
- Han Liu
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Li
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuekai Xiong
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jieru Wang
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojie Zhu
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Zhou
- Tuberculosis Department, Wuhan Medical Treatment Center, Wuhan, 430023, China
| | - Li Zhang
- Tuberculosis Department, Wuhan Medical Treatment Center, Wuhan, 430023, China
| | - Yifan Zhu
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youchong Peng
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Yabaji SM, Dhamija E, Mishra AK, Srivastava KK. ESAT-6 regulates autophagous response through SOD-2 and as a result induces intracellular survival of Mycobacterium bovis BCG. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140470. [PMID: 32535275 DOI: 10.1016/j.bbapap.2020.140470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
Mycobacterium is known for subverting the host defense machinery, and one such mechanism is the inhibition of autophagy. Here, we have demonstrated that Mycobacterium tuberculosis (MTB) secretes a virulence factor; an early secretory antigenic target protein (ESAT-6) into the phagosome, which induces the expression and activity of mitochondrial superoxide dismutase (SOD-2) of macrophages. Using a series of experiments, and Mycobacterium bovis BCG as a model strain (where ESAT-6 protein is not expressed), we have delineated that the protein regulates SOD-2 of macrophages. The expression and augmentation of SOD-2 activity were confirmed by either incubating the macrophages with ESAT-6 protein, transfection of macrophage by esat6 gene using a eukaryotic promoter vector, or by infection with different mycobacterial strains. The induction of acidification of phagosomal compartment containing bacteria was observed in cells that express low levels of SOD-2. This was further confirmed by observing a significant decrease in the M. bovis BCG intracellular load in the sod-2 knocked-down macrophages.
Collapse
Affiliation(s)
- Shivraj M Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Ekta Dhamija
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Alok K Mishra
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
8
|
Chatterjee A, Pandey S, Dhamija E, Jaiswal S, Yabaji SM, Srivastava KK. ATP synthase, an essential enzyme in growth and multiplication is modulated by protein tyrosine phosphatase in Mycobacterium tuberculosis H37Ra. Biochimie 2019; 165:156-160. [PMID: 31377193 DOI: 10.1016/j.biochi.2019.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase (PtpA) has so far been known to control intracellular survival of mycobacteria; whereas the ATP synthase which is essential for mycobacterial growth has recently been contemplated in developing a breakthrough anti-TB drug, diarylquinoline. Since both of these enzymes have been established as validated drug targets; we report a robust and functional relationship between these two enzymes through a series of experiments using Mtb H37Ra. In the present study we report that the mycobacterial ATP synthase alpha subunit is regulated by PtpA. We generated gene knock-out for the enzyme PtpA and subjected to determine the mycobacterial replication and the proteome profile of wild type, mutant (ΔptpA) and complemented (ΔptpA:ptpA) strains of Mtb H37Ra. A substantial amount of decrease in the protein level of ATP synthase alpha subunit (AtpA) in case of mutant H37Ra was observed, while the levels of the enzyme were either increased or remained unchanged, in wild type and in the complemented strains.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sapna Pandey
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ekta Dhamija
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Swati Jaiswal
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shivraj M Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research(+), CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
9
|
Hu H, Tian M, Li P, Bao Y, Guan X, Lian Z, Yin Y, Ding C, Yu S. Brucella infection regulates peroxiredoxin-5 protein expression to facilitate intracellular survival by reducing the production of nitric oxide and reactive oxygen species. Biochem Biophys Res Commun 2019; 516:82-88. [PMID: 31196623 DOI: 10.1016/j.bbrc.2019.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 01/12/2023]
Abstract
Peroxiredoxin-5 (Prdx5) is a multifunctional protein involved in oxidative stress, apoptosis and inflammatory responses. However, how Prdx5 functions during microbial infections is rarely reported. In this study, we demonstrate that Brucella infection increased Prdx5 expression to promote its intracellular growth in macrophages. Further study show that B. abortus infection promoted its intracellular growth by decreasing the production of nitric oxide and reactive oxygen species. In addition, the expression of Prdx5 was independent on live Brucella and the type IV secretion system of Brucella. Instead, its expression was regulated by the lipopolysaccharide of Brucella. Moreover, Brucella infection increased Prdx5 expression in primary macrophage and mice. Collectively, these findings demonstrate for the first time that Prdx5 promotes Brucella intracellular growth by decreasing the production of NO and ROS. This finding provides new insights into the evasive strategies of Brucella and will be useful for the development of novel effective therapeutic approaches to treat Brucella infections.
Collapse
Affiliation(s)
- Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China.
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China.
| | - Peng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China.
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China.
| | - Xiang Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China.
| | - Zhengmin Lian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China.
| | - Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
10
|
Exploration of some new secretory proteins to be employed for companion diagnosis of Mycobacterium tuberculosis. Immunol Lett 2019; 209:67-74. [PMID: 30898660 DOI: 10.1016/j.imlet.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Tuberculosis (TB) is a highly infectious disease and its early and precise diagnosis is essential to reduce morbidity and mortality of patients. Since the routine diagnostic tests (like Monteux, AFB smear microscopy, chest X-Ray) do not give infallible results, additional tests are always recommended. Therefore to address the concerns about non-specificity of the present battery of diagnostic tests, we have attempted to analyze some unique secretory antigens which could be able to identify the stage specific infection of MTB. In this study, we have used recombinant proteins CFP-10, ESAT-6, Ag85 A, Ag85B, Ag85C, PE3, PE4 and Mycp1 to eliminate heterogeneity and cross reactivity in clinical diagnosis. Amplified genes were cloned and over-expressed in Escherichia coli BL21 (DE3). The recombinantly purified proteins were used as antigens against 158 sera samples of TB patients. Secretory proteins showed better response than the PPD control. Among all the used antigens PE3 and PE4 proteins showed better reactivity levels among all the groups of TB patients. The secretions of CFP-10 and ESAT-6 were also higher as compared to other secretory proteins like Ag85 A, Ag85B, Ag85C and MycP1.The clinical use of these newly identified secretory antigens could be of significant value for the confirmatory, rapid, simple and low-cost diagnosis of TB patients.
Collapse
|
11
|
Tajima K, Akanuma S, Matsumoto-Akanuma A, Yamanaka D, Ishibashi KI, Adachi Y, Ohno N. Activation of macrophages by a laccase-polymerized polyphenol is dependent on phosphorylation of Rac1. Biochem Biophys Res Commun 2017; 495:2209-2213. [PMID: 29269293 DOI: 10.1016/j.bbrc.2017.12.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 01/02/2023]
Abstract
Various physiologically active effects of polymerized polyphenols have been reported. In this study, we synthesized a polymerized polyphenol (mL2a-pCA) by polymerizing caffeic acid using mutant Agaricus brasiliensis laccase and analyzed its physiological activity and mechanism of action. We found that mL2a-pCA induced morphological changes and the production of cytokines and chemokines in C3H/HeN mouse-derived resident peritoneal macrophages in vitro. The mechanisms of action of polymerized polyphenols on in vitro mouse resident peritoneal cells have not been characterized in detail previously. Herein, we report that the mL2a-pCA-induced production of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) in C3H/HeN mouse-derived resident peritoneal cells was inhibited by treatment with the Rac1 inhibitor NSC23766 trihydrochloride. In addition, we found that mL2a-pCA activated the phosphorylation Rac1. Taken together, the results show that mL2a-pCA induced macrophage activation via Rac1 phosphorylation-dependent pathways.
Collapse
Affiliation(s)
- Katsuya Tajima
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Akiko Matsumoto-Akanuma
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Daisuke Yamanaka
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ken-Ichi Ishibashi
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiyuki Adachi
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naohito Ohno
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|