1
|
Yampolskaya DS, Kopylova GV, Shchepkin DV, Nabiev SR, Nikitina LV, Walklate J, Ziganshin RH, Bershitsky SY, Geeves MA, Matyushenko AM, Levitsky DI. Pseudo-phosphorylation of essential light chains affects the functioning of skeletal muscle myosin. Biophys Chem 2023; 292:106936. [PMID: 36436358 DOI: 10.1016/j.bpc.2022.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
The work aimed to investigate how the phosphorylation of the myosin essential light chain of fast skeletal myosin (LC1) affects the functional properties of the myosin molecule. Using mass-spectrometry, we revealed phosphorylated peptides of LC1 in myosin from different fast skeletal muscles. Mutations S193D and T65D that mimic natural phosphorylation of LC1 were produced, and their effects on functional properties of the entire myosin molecule and isolated myosin head (S1) were studied. We have shown that T65D mutation drastically decreased the sliding velocity of thin filaments in an in vitro motility assay and strongly increased the duration of actin-myosin interaction in optical trap experiments. These effects of T65D mutation in LC1 observed only with the whole myosin but not with S1 were prevented by double T65D/S193D mutation. The T65D and T65D/S193D mutations increased actin-activated ATPase activity of S1 and decreased ADP affinity for the actin-S1 complex. The results indicate that pseudo-phosphorylation of LC1 differently affects the properties of the whole myosin molecule and its isolated head. Also, the results show that phosphorylation of LC1 of skeletal myosin could be one more mechanism of regulation of actin-myosin interaction that needs further investigation.
Collapse
Affiliation(s)
- Daria S Yampolskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, Moscow 119071, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Salavat R Nabiev
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Jonathan Walklate
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology of the Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Alexander M Matyushenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, Moscow 119071, Russia
| | - Dmitrii I Levitsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33, Moscow 119071, Russia.
| |
Collapse
|
2
|
Yampolskaya DS, Kopylova GV, Shchepkin DV, Bershitsky SY, Matyushenko AM, Levitsky DI. Properties of Cardiac Myosin with Cardiomyopathic Mutations in Essential Light Chains. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1260-1267. [PMID: 36509720 DOI: 10.1134/s0006297922110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of cardiomyopathic mutations E56G, M149V, and E177G in the MYL3 gene encoding essential light chain of human ventricular myosin (ELCv), on the functional properties of cardiac myosin and its isolated head (myosin subfragment 1, S1) were investigated. Only the M149V mutation upregulated the actin-activated ATPase activity of S1. All mutations significantly increased the Ca2+-sensitivity of the sliding velocity of thin filaments on the surface with immobilized myosin in the in vitro motility assay, while mutations E56G and M149V (but not E177G) reduced the sliding velocity of regulated thin filaments and F-actin filaments almost twice. Therefore, despite the fact that all studied mutations in ELCv are involved in the development of hypertrophic cardiomyopathy, the mechanisms of their influence on the actin-myosin interaction are different.
Collapse
Affiliation(s)
- Daria S Yampolskaya
- Bach Institute of Biochemistry, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Alexander M Matyushenko
- Bach Institute of Biochemistry, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Dmitrii I Levitsky
- Bach Institute of Biochemistry, Biotechnology Research Center, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
3
|
Banaszkiewicz M, Olejnik A, Krzywonos-Zawadzka A, Hałucha K, Bil-Lula I. Expression of atrial‑fetal light chains in cultured human cardiomyocytes after chemical ischemia‑reperfusion injury. Mol Med Rep 2021; 24:770. [PMID: 34490485 PMCID: PMC8430302 DOI: 10.3892/mmr.2021.12410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022] Open
Abstract
Atrial light chains (ALC1) are naturally present in adult heart atria, while ventricular light chains (VLC1) are predominant in ventricles. Degradation of VLC1 and re-expression of ALC1 in heart ventricles are associated with heart disorders in response to pressure overload. The aim of the current study was to investigate changes in myosin light chain expression after simulated ischemia and simulated reperfusion (sI/sR). Human cardiomyocytes (HCM) isolated from adult heart ventricles were subjected to chemical ischemia. The control group was maintained under aerobic conditions. Myocyte injury was determined by testing lactate dehydrogenase (LDH) activity. The gene expression of ALC1, VLC1 and MMP-2 were assessed by reverse transcription-quatitive PCR. Additionally, protein synthesis was measured using ELISA kits and MMP-2 activity was measured by zymography. The results revealed that LDH activity was increased in sI/sR cell-conditioned medium (P=0.02), confirming the ischemic damage of HCM. ALC1 gene expression and content in HCM were also increased in the sI/sR group (P=0.03 and P<0.001, respectively), while VLC1 gene expression after sI/sR was decreased (P=0.008). Furthermore, MMP-2 gene expression and synthesis were lower in the sI/sR group when compared with the aerobic control group (P<0.001 and P=0.03, respectively). MMP-2 activity was also increased in sI/sR cell-conditioned medium (P=0.006). In conclusion, sI/sR treatment led to increased ALC1 and decreased VLC1 expression in ventricular cardiomyocytes, which may constitute an adaptive mechanism to altered conditions and contribute to the improvement of heart function.
Collapse
Affiliation(s)
- Marta Banaszkiewicz
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50‑556 Wroclaw, Poland
| | - Agnieszka Olejnik
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50‑556 Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50‑556 Wroclaw, Poland
| | - Kornela Hałucha
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50‑556 Wroclaw, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50‑556 Wroclaw, Poland
| |
Collapse
|
4
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
5
|
Lou J, Zou Y, Luo Y, Zhang ZY, Liu FY, Tan J, Zeng X, Wan L, Huang OP. Novel MYH8 mutations in 152 Han Chinese samples with ovarian endometriosis. Gynecol Endocrinol 2020; 36:632-635. [PMID: 32308057 DOI: 10.1080/09513590.2020.1751107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endometriosis is a common gynecological disease affecting up to 10% of women at reproductive age. Prior combined studies implied that MYH8 mutations might exist in endometriosis. Here, 152 Han Chinese samples with ovarian endometriosis were analyzed for the presence of MYH8 mutations. Two heterozygous missense mutations in the MYH8 gene, c.1441A > C (p.I481L) and c.4057G > A (p.E1353K), were identified in our samples. These mutations were neither found in public databases nor detected in our 485 Han Chinese control women without endometriosis. The p.I481L-mutated sample belonged to 34-year-old, who had slightly elevated serum CA 125 (42.09 U/mL); while the sample with p.E1353K mutation belonged to 25 years old, who had a markedly increased serum CA125 (89.86 U/mL). The evolutionary conservation analysis results suggested that these MYH8 mutations caused highly conserved amino acid substitutions among vertebrate species. Both the mutations were predicted to be 'disease causing' by MutationTaster and SIFT programs. In addition, no association was observed between MYH8 mutations and the available clinical data. In summary, the present study identified two novel potential pathogenic mutations in the MYH8 gene in samples with ovarian endometriosis for the first time, implying that MYH8 mutations might play a positive role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jun Lou
- The College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- Department of Gynecological Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Zi-Yu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Jun Tan
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Xin Zeng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Lei Wan
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| | - Ou-Ping Huang
- The College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal & Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Logvinova DS, Levitsky DI. Essential Light Chains of Myosin and Their Role in Functioning of the Myosin Motor. BIOCHEMISTRY (MOSCOW) 2018; 83:944-960. [DOI: 10.1134/s0006297918080060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|