1
|
Souza C, Caetano E, Rodrigues S, Lopes M, Mattos B, Santos M, Rizzi E, Dias-Junior C. Isoflurane increases the activity of the vascular matrix metalloproteinase-2 in non-pregnant rats and increases the nitric oxide metabolites in pregnancy. Biosci Rep 2024; 44:BSR20240192. [PMID: 38757914 PMCID: PMC11147811 DOI: 10.1042/bsr20240192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Surgeries that require general anesthesia occur in 1.5-2% of gestations. Isoflurane is frequently used because of its lower possibility of affecting fetal growth. Therefore, we examined the isoflurane anesthesia-induced effects on maternal hemodynamic and vascular changes. We hypothesized that isoflurane would enhance endothelium-dependent vasodilation as a consequence of increased nitric oxide and decreased metalloproteinases (MMPs). Female rats (n=28) were randomized into 4 groups (7 rats/group): conscious (non-anesthetized) non-pregnant group, non-pregnant anesthetized group, conscious pregnant group, and pregnant anesthetized group. Anesthesia was performed on the 20th pregnancy day, and hemodynamic parameters were monitored. Nitric oxide metabolites, gelatinolytic activity of MMP-2 and MMP-9, and the vascular function were assessed. Isoflurane caused no significant hemodynamic changes in pregnant compared with non-pregnant anesthetized group. Impaired acetylcholine-induced relaxations were observed only in conscious non-pregnant group (by approximately 62%) versus 81% for other groups. Phenylephrine-induced contractions were greater in endothelium-removed aorta segments of both pregnant groups (with or without isoflurane) compared with non-pregnant groups. Higher nitric oxide metabolites were observed in anesthetized pregnant in comparison with the other groups. Reductions in the 75 kDa activity and concomitant increases in 64 kDa MMP-2 isoforms were observed in aortas of pregnant anesthetized (or not) groups compared with conscious non-pregnant group. Isoflurane anesthesia shows stable effects on hemodynamic parameters and normal MMP-2 activation in pregnancy. Furthermore, there were increases in nitric oxide bioavailability, suggesting that isoflurane provides protective actions to the endothelium in pregnancy.
Collapse
Affiliation(s)
- Carolina Rosa Rodrigues Souza
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
- School of Veterinary Medicine and Animal Science, UNESP, Botucatu, Sao Paulo, Brazil
| | - Edileia Souza Paula Caetano
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Serginara David Rodrigues
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Matheus Cleto Lopes
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
- School of Veterinary Medicine and Animal Science, UNESP, Botucatu, Sao Paulo, Brazil
| | - Bruna Rahal Mattos
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos A. Dias-Junior
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| |
Collapse
|
2
|
Kästner SB, Amon T, Tünsmeyer J, Noll M, Söbbeler FJ, Laakso S, Saloranta L, Huhtinen M. Effects of tasipimidine premedication with and without methadone and dexmedetomidine on cardiovascular variables during propofol-isoflurane anaesthesia in Beagle dogs. Vet Anaesth Analg 2024; 51:253-265. [PMID: 38580536 DOI: 10.1016/j.vaa.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN Prospective, placebo-controlled, blinded, experimental trial. ANIMALS A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 μg kg-1 orally and placebo IV; TMP: tasipimidine 30 μg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 μg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 μg kg-1 IV followed by 1 μg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.
Collapse
Affiliation(s)
- Sabine Br Kästner
- Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany.
| | - Thomas Amon
- Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany
| | - Julia Tünsmeyer
- Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany
| | - Mike Noll
- Evidensia, Small Animal Clinic, Norderstedt, Germany
| | | | - Sirpa Laakso
- Department of Research and Development, Orion Pharma, Orion Corporation, Espoo, Finland
| | - Lasse Saloranta
- Department of Research and Development, Orion Pharma, Orion Corporation, Espoo, Finland
| | - Mirja Huhtinen
- Department of Research and Development, Orion Pharma, Orion Corporation, Espoo, Finland
| |
Collapse
|
3
|
Rocha TLA, Borges TF, Rodrigues SD, Martins LZ, da Silva MLS, Bonacio GF, Rizzi E, Dias-Junior CA. Sevoflurane and isoflurane anesthesia induce redox imbalance, but only sevoflurane impairs vascular contraction. Fundam Clin Pharmacol 2023; 37:937-946. [PMID: 37085979 DOI: 10.1111/fcp.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Volatile anesthetics may cause vascular dysfunction; however, underlying effects are unclear. The aim of the present study was to investigate whether sevoflurane and isoflurane affect vascular function, nitric oxide (NO) bioavailability, and biomarkers of oxidative stress and inflammation. Wistar rats were divided into three experimental groups: Not anesthetized (control group) or submitted to anesthesia with isoflurane (Iso group) or sevoflurane (Sevo group). Hemodynamic parameters were monitored during anesthesia, and blood gas values and biochemical determinants were analyzed. Isometric contractions were recorded in aortic rings. Vasoconstriction induced by potassium chloride (KCl) and phenylephrine (Phe) were measured. No differences in hemodynamic parameters and blood gasses variables were observed. Impaired KCl and Phe-induced contractions were observed in endothelium-intact aorta of Sevo compared to Iso and Control groups. Redox imbalance was found in Sevo and Iso groups. Reduced NO bioavailability and increased activity of matrix metalloproteinase 2 (MMP-2) were observed in Sevo, but not in the Iso group. While reduced IL-10 and IL-1β were observed in Sevo, increases in IL-1β in the Iso group were found. Sevoflurane, but not isoflurane, anesthesia impairs vasocontraction, and reduced NO and cytokines and increased MMP-2 activity may be involved in vascular dysfunction after sevoflurane anesthesia.
Collapse
Affiliation(s)
- Thalita L A Rocha
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Teubislete F Borges
- Department of Anesthesiology, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Serginara D Rodrigues
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Laisla Z Martins
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Maria L S da Silva
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| | - Gisele F Bonacio
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlos A Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University, UNESP, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
4
|
Lv J, Cheng H, Yao W, Liu C, Chen Y, Jin X, Yang Z, Li Y. 4.8% sevoflurane induces activation of autophagy in human neuroblastoma SH-SY5Y cells by the AMPK/mTOR signaling pathway. Neurotoxicology 2022; 90:256-264. [PMID: 35472370 DOI: 10.1016/j.neuro.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Prolonged sevoflurane exposure leads to neurotoxicity. Autophagy plays an important role in promoting cell survival in different conditions. However, the role and mechanism of autophagy in sevoflurane-induced neurotoxicity were not fully elucidated. We attempted to indicate whether sevoflurane could activate the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)-mediated autophagy to attenuate anesthetics-induced neuronal injury in this study. Sevoflurane treatment significantly decreased the cell viability and induced apoptosis of SH-SY5Y cells. The expression level of Bcl-2 decreased, while that of Bax remarkably increased. Meanwhile, autophagy was activated by sevoflurane exposure as evidenced by increased expression levels of autophagy-related proteins (LC3-II and Atg5), decreased expression level of autophagic substrate P62, and increased autophagosomes and autolysosomes. Further autophagosomes and fewer autolysosomes were observed in the presence of Bafilomycin A1, an autolysosomes degradation inhibitor, suggesting that sevoflurane induced autophagic flux rather than inhibiting degradation of autophagy. Activation of autophagy by rapamycin partly reversed the sevoflurane-decreased cell viability. In contrast, inhibition of autophagy by 3-Methyladenine (3-MA) or Atg5-targeted small interfering RNA (siRNA) aggravated the sevoflurane-induced neurotoxicity. Further examination revealed that sevoflurane-induced autophagy was mediated by the AMPK/mTOR signaling pathway, with increased p-AMPK expression and decreased p-mTOR expression. Collectively, these results indicated that sevoflurane activates autophagy by regulating the AMPK/mTOR signaling pathway, which is protective against sevoflurane-induced damage in SH-SY5Y cells. Our results may assist clinicians to develop further promising therapeutic strategies for the neurotoxicity induced by inhaled anesthetics.
Collapse
Affiliation(s)
- Jingjing Lv
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Hao Cheng
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Weidong Yao
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Can Liu
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Yongquan Chen
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Xiaoju Jin
- Department of Anesthesiology, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan Road, Wuhu 241001, Anhui, PR China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Yuanhai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, PR China.
| |
Collapse
|
5
|
Wang Y, Ming XX, Zhang CP. Fluorine-Containing Inhalation Anesthetics: Chemistry, Properties and Pharmacology. Curr Med Chem 2020; 27:5599-5652. [DOI: 10.2174/0929867326666191003155703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Studies on fluorinated inhalation anesthetics, including synthesis, physical chemistry and
pharmacology, have been summarized in this review. Retrospecting the history of inhalation anesthetics
revealed their increasing reliance on fluorine and ether structures. Halothane causes a rare but
severe immune-based hepatotoxicity, which was replaced by enflurane in the 1970s. Isoflurane replaced
enflurane in the 1980s, showing modest advantages (e.g. lower solubility, better metabolic
stability, and without convulsive predisposition). Desflurane and sevoflurane came into use in the
1990s, which are better anesthetics than isoflurane (less hepatotoxicity, lower solubility, and/or
markedly decreased pungency). However, they are still less than perfect. To gain more ideal inhalation
anesthetics, a large number of fluorinated halocarbons, polyfluorocycloalkanes, polyfluorocycloalkenes,
fluoroarenes, and polyfluorooxetanes, were prepared and their potency and toxicity were
evaluated. Although the pharmacology studies suggested that some of these agents produced anesthesia,
no further studies were continued on these compounds because they showed obvious lacking
as anesthetics. Moreover, the anesthetic activity cannot be simply predicted from the molecular
structures but has to be inferred from the experiments. Several regularities were found by experimental
studies: 1) the potency and toxicity of the saturated linear chain halogenated ether are enhanced
when its molecular weight is increased; 2) the margin of safety decreases and the recovery
time is prolonged when the boiling point of the candidate increases; and 3) compounds with an
asymmetric carbon terminal exhibit good anesthesia. Nevertheless, the development of new inhalation
anesthetics, better than desflurane and sevoflurane, is still challenging not only because of the
poor structure/activity relationship known so far but also due to synthetic issues.
Collapse
Affiliation(s)
- Yuzhong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Xiao-Xia Ming
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
6
|
Effects of anesthetics on microvascular reactivity measured by vascular occlusion tests during off-pump coronary artery bypass surgery: a randomized controlled trial. J Clin Monit Comput 2020; 35:1219-1228. [PMID: 32915370 DOI: 10.1007/s10877-020-00587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Microvascular function may be modulated by various anesthetics. Desflurane and propofol anesthesia have different effects on microvascular function. However, there are few reports on the effects of sevoflurane and desflurane on microvascular function during cardiac surgery. We compared the effects of sevoflurane and desflurane on microvascular reactivity, as measured by the vascular occlusion tests (VOTs) during off-pump coronary artery bypass (OPCAB) surgery. Patients undergoing OPCAB were eligible for study inclusion. Patients were excluded if they were unsuitable for treatment with volatile agents or the VOT, had renal failure or uncontrolled diabetes, or were pregnant. The enrolled patients were randomized to receive sevoflurane or desflurane during surgery. Tissue oxygen saturation (StO2) dynamics during the VOT were measured at baseline (pre-anesthesia), pre-anastomosis, post-anastomosis of vessel grafts, and at the end of surgery. Macrohemodynamic variables, arterial blood gas parameters, and in-hospital adverse events were also evaluated. A total of 64 patients (32 in each group) were analyzed. StO2 dynamics did not differ between the groups. Compared to baseline, StO2 and the rate of recovery following vascular occlusion decreased at the end of surgery in both groups (adjusted p-value, < 0.001), and no group difference was observed. Macrohemodynamic variables, blood gas analysis results, and the rate of postoperative in-hospital adverse events were similar between the groups. Microvascular reactivity, as measured by the VOT during OPCAB, showed no difference between the sevoflurane and desflurane groups. Also, there were no group differences in macrohemodynamics or the rate of postoperative adverse events. TRIAL REGISTRATION : Clinicaltrials.gov, identifier NCT03209193; registered on July 3, 2017.
Collapse
|