1
|
Ceci M, Bonvissuto D, Papetti F, Silvestri F, Sette C, Catalani E, Cervia D, Gornati R, Romano N. RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Sci Rep 2024; 14:25698. [PMID: 39465301 PMCID: PMC11514175 DOI: 10.1038/s41598-024-76138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Receptors for activated C kinases (RACKs) have been shown to coordinate PKC-mediated hypertrophic signalling in mice. However, little information is available on its participation in embryonic gene expression. This study investigated the involvement of RACK1 in the expression of embryonic genes in a zebrafish (ZF) ex vivo heart culture model by using phenylephrine (PE) or a growth factors cocktail (GFs) as a prohypertrophic/regeneration stimulus. Blebbistatin (BL) inhibition has also been studied for its ability to block the signal transduction actions of some PEs. qRT‒PCR and immunoblot analyses confirmed the upregulation of RACK1 in the PE- and GFs-treated groups. BL administration counteracted PE-induced hypertrophy and downregulated RACK1 expression. Immunohistochemical analyses of the heart revealed the colocalization of RACK1 and embryonic genes, namely, Gata4, Wt1, and Nfat2, under stimulation, whereas these genes were expressed at lower levels in the BL treatment group. Culturing ZF heart cells activated via GFs treatment increased the expression of RACK1. The overexpression of RACK1 induced by the transfection of recombinant RACK1 cDNA in ZF heart cells increased the expression of embryonic genes, especially after one week of GFs treatment. In summary, these results support the involvement of RACK1 in the induction of embryonic genes during cardiac hypertrophy/GFs stimulation in a fish heart model, which can be used as an alternative study model for mammals.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Sette
- DNHA, Catholic University of Sacred Heart, Rome, Italy
- IRCCS, Policlinico A. Gemelli Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
2
|
Ganekal P, Vastrad B, Vastrad C, Kotrashetti S. Identification of biomarkers, pathways, and potential therapeutic targets for heart failure using next-generation sequencing data and bioinformatics analysis. Ther Adv Cardiovasc Dis 2023; 17:17539447231168471. [PMID: 37092838 PMCID: PMC10134165 DOI: 10.1177/17539447231168471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Heart failure (HF) is the most common cardiovascular diseases and the leading cause of cardiovascular diseases related deaths. Increasing molecular targets have been discovered for HF prognosis and therapy. However, there is still an urgent need to identify novel biomarkers. Therefore, we evaluated biomarkers that might aid the diagnosis and treatment of HF. METHODS We searched next-generation sequencing (NGS) dataset (GSE161472) and identified differentially expressed genes (DEGs) by comparing 47 HF samples and 37 normal control samples using limma in R package. Gene ontology (GO) and pathway enrichment analyses of the DEGs were performed using the g: Profiler database. The protein-protein interaction (PPI) network was plotted with Human Integrated Protein-Protein Interaction rEference (HiPPIE) and visualized using Cytoscape. Module analysis of the PPI network was done using PEWCC1. Then, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed by Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. RESULTS A total of 930 DEGs, 464 upregulated genes and 466 downregulated genes, were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections, and the citric acid tricarboxylic acid (TCA) cycle and respiratory electron transport. After combining the results of the PPI network miRNA-hub gene regulatory network and TF-hub gene regulatory network, 10 hub genes were selected, including heat shock protein 90 alpha family class A member 1 (HSP90AA1), arrestin beta 2 (ARRB2), myosin heavy chain 9 (MYH9), heat shock protein 90 alpha family class B member 1 (HSP90AB1), filamin A (FLNA), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), cullin 4A (CUL4A), YEATS domain containing 4 (YEATS4), and lysine acetyltransferase 2B (KAT2B). CONCLUSIONS This discovery-driven study might be useful to provide a novel insight into the diagnosis and treatment of HF. However, more experiments are needed in the future to investigate the functional roles of these genes in HF.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, #253, Bharthinagar, Dharwad 580001, India
| | | |
Collapse
|
3
|
Can Blebbistatin block the hypertrophy status in the zebrafish exvivo cardiac model? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166471. [PMID: 35750268 DOI: 10.1016/j.bbadis.2022.166471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
Ex-vivo simple models are powered tools to study cardiac hypertrophy. It is possible to control the activation of critical genes and thus test the effects of drug therapies before the in vivo tests. A zebrafish cardiac hypertrophy developed by 500 μM phenylephrine (PE) treatment in ex vivo culture has been demonstrated to activate the essential expression of the embryonal genes. These genes are the same as those described in several previous pieces of research on hypertrophic pathology in humans. The efficacy of the chemical drug Blebbistatin (BL) on hypertrophy induced ex vivo cultured hearts is studied in this research. BL can inhibit the myosins and the calcium wave in counteracting the hypertrophy status caused by PE. Samples treated with PE, BL and PE simultaneously, or pre/post-treatment with BL, have been analysed for the embryonal gene activation concerning the hypertrophy status. The qRTPCR has shown an inhibitory effect of BL treatments on the microRNAs downregulation with the consequent low expression of essential embryonal genes. In particular, BL seems to be effective in blocking the hyperplasia of the epicardium but less effective in myocardium hypertrophy. The model can make it possible to obtain knowledge on the transduction pathways activated by BL and investigate the potential use of this drug in treating cardiac hypertrophy in humans.
Collapse
|
4
|
Li B, Wang X, Yu M, Yang P, Wang W. G6PD, bond by miR-24, regulates mitochondrial dysfunction and oxidative stress in phenylephrine-induced hypertrophic cardiomyocytes. Life Sci 2020; 260:118378. [PMID: 32898528 DOI: 10.1016/j.lfs.2020.118378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023]
Abstract
AIMS Pathological cardiac hypertrophy (CH) is one of the main risk factors for heart failure and cardiac death. Mitochondrial dysfunction and oxidative stress often occur in hypertrophic cardiomyocytes. It was recently proposed that deficiency or decreased activity of glucose-6-phosphate dehydrogenase (G6PD) may be related to the development of CH. This study aimed to investigate the expression of G6PD in CH and its regulatory role in mitochondrial dysfunction and oxidative stress of CH cells. MAIN METHODS Phenylephrine (PE) was used to create an in vitro model of CH. Using RT-qPCR and western blotting, the expression levels of target mRNAs and proteins were measured. ELISA assays and commercial kits based on spectrophotometry or colorimetry were used to measure mitochondrial function and oxidative stress. TargetScan and luciferase reporter gene assays were utilized for combination prediction and validation. CCK-8 and TUNEL kit were used to determine cell viability and apoptosis. KEY FINDINGS The results showed that G6PD overexpression attenuated the decreases of mitochondrial respiration, ATP, ATP synthetase and mitochondrial membrane potential induced by PE, as well as the increases of LDH release and apoptosis. Besides, PE elevated ROS activity, NO and MDA contents, and reduced SOD, CAT levels and cell viability. These effects were hindered by G6PD overexpression. MiR-24 was found to directly bind to G6PD at the motif of CUGAGCC and regulated its expression, furtherly, influenced the G6PD-mediated mitochondrial dysfunction and oxidative stress of CH cells. SIGNIFICANCE Generally, our study demonstrated that miR-24/G6PD regulates mitochondrial dysfunction and oxidative stress in CH cells, representing a new sight for CH therapy.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiology, The Third Hospital of Jilin University, Changchun 130033, China; Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Cardiovascular Research Institute, Changchun 130033, China
| | - Xiaotong Wang
- Department of Cardiology, The Third Hospital of Jilin University, Changchun 130033, China; Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Cardiovascular Research Institute, Changchun 130033, China
| | - Ming Yu
- Department of Cardiology, The Third Hospital of Jilin University, Changchun 130033, China; Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Cardiovascular Research Institute, Changchun 130033, China
| | - Ping Yang
- Department of Cardiology, The Third Hospital of Jilin University, Changchun 130033, China; Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Changchun 130033, China; Jilin Provincial Cardiovascular Research Institute, Changchun 130033, China
| | - Wei Wang
- Department of Cardiovascular Surgery, The Third Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
5
|
Romano N, Ceci M. Are microRNAs responsible for cardiac hypertrophy in fish and mammals? What we can learn in the activation process in a zebrafish ex vivo model. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165896. [PMID: 32681863 DOI: 10.1016/j.bbadis.2020.165896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
Abstract
Recent studies have correlated dysregulated miRNA expression with diseased hearts. With the aim of developing an easily manipulated experimental model, phenylephrine (PE) was added to cultured zebrafish hearts to study the expression of miR1 and miR133a by qRT-PCR. Both miRs were downregulated, with greater downregulation leading to higher hypertrophy. The involvement of this miRs was confirmed by the in-vivo inoculation of complementary sequences (AmiR1 and AmiR133a). HSP70 (involved in transporting proteins and in anti-apoptosis processes) was increased in both treatments. Hyperplasia was observed in the epicardium based on WT1 expression (embryonic epicardial cell marker) in both the PE treatment and AmiR133a treatment. The treatment with AmiR1 showed only cardiomyocyte hypertrophy. This ex-vivo model revealed that miR1 and miR133a play a key role in activating early processes leading to myocardium hypertrophy and epicardium hyperplasia and confirmed the expected similarities with hypertrophic disease that occurs in humans.
Collapse
Affiliation(s)
- Nicla Romano
- Dept of Ecology & Biology Sciences, University of Tuscia, Viterbo, Italy.
| | - Marcello Ceci
- Dept of Ecology & Biology Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
6
|
Romano N, Catalani A, Lattante S, Belardo A, Proietti S, Bertini L, Silvestri F, Catalani E, Cervia D, Zolla L, Sabatelli M, Welshhans K, Ceci M. ALS skin fibroblasts reveal oxidative stress and ERK1/2-mediated cytoplasmic localization of TDP-43. Cell Signal 2020; 70:109591. [PMID: 32126264 DOI: 10.1016/j.cellsig.2020.109591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
The main hallmark of many forms of familiar and sporadic amyotrophic lateral sclerosis (ALS) is a reduction in nuclear TDP-43 protein and its inclusion in cytoplasmic aggregates in motor neurons. In order to understand which cellular and molecular mechanisms underlie the mislocalization of TDP-43, we examined human skin fibroblasts from two individuals with familial ALS, both with mutations in TDP-43, and two individuals with sporadic ALS, both without TDP-43 mutations or mutations in other ALS related genes. We found that all ALS fibroblasts had a partially cytoplasmic localization of TDP-43 and had reduced cell metabolism as compared to fibroblasts from apparently healthy individuals. ALS fibroblasts showed an increase in global protein synthesis and an increase in 4E-BP1 and rpS6 phosphorylation, which is indicative of mTORC1 activity. We also observed a decrease in glutathione (GSH), which suggests that oxidative stress is elevated in ALS. ERK1/2 activity regulated the extent of oxidative stress and the localization of TDP-43 in the cytoplasm in all ALS fibroblasts. Lastly, ALS fibroblasts showed reduced stress granule formation in response to H2O2 stress. In conclusion, these findings identify specific cellular and molecular defects in ALS fibroblasts, thus providing insight into potential mechanisms that may also occur in degenerating motor neurons.
Collapse
Affiliation(s)
- Nicla Romano
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Alessia Catalani
- Department of Molecular Sciences, University of Urbino "Carlo Bo", Via Santa Chiara, 27 61029 Urbino, PU, Italy
| | - Serena Lattante
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Unità Operativa Complessa di Genetica Medica, 00168 Roma, Italy; Università Cattolica del Sacro Cuore, Istituto di Medicina Genomica, 00168 Roma, Italy
| | - Antonio Belardo
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Laura Bertini
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Federica Silvestri
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia (DAFNE), 01100 Viterbo, Italy
| | - Mario Sabatelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Dipartimento Scienze dell'invecchiamento, neurologiche, ortopediche e della testa-collo, 00168 Roma, Italy; Università Cattolica del Sacro Cuore, Istituto di Neurologia, Centro Clinico NEMO, 00168 Roma, Italy
| | - Kristy Welshhans
- Department of Biological Sciences, School of Biomedical Sciences and Brain Health Research Institute, Kent State University, Kent, OH 44236, USA
| | - Marcello Ceci
- Department of Ecological and Biological Science (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| |
Collapse
|
7
|
Romano N, Ceci M. Heart regeneration is regulates by key micro RNAs from fish to mammals: what it can learned about the epicardial cells activation during the regeneration in zebrafish. Cell Death Dis 2018; 9:650. [PMID: 29844326 PMCID: PMC5973931 DOI: 10.1038/s41419-018-0609-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|