1
|
Mandl A, Markowski MC, Carducci MA, Antonarakis ES. Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opin Investig Drugs 2023; 32:213-228. [PMID: 36857796 DOI: 10.1080/13543784.2023.2186851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The bromodomain and extraterminal (BET) family of proteins are epigenetic readers of acetylated histones and are critical activators of oncogenic networks across many cancers. Therapeutic targeting of BET proteins has been an attractive area of clinical development for metastatic castration-resistant prostate cancer. In recent years, many structurally diverse BET inhibitors have been discovered and tested. Preclinical studies have demonstrated significant antiproliferative activity of BET inhibitors against prostate cancer. However, their clinical success as monotherapies has been limited by treatment-associated toxicities, primary and acquired drug resistance, and a lack of predictive biomarkers of benefit. AREAS COVERED This review provides an overview of advancements in BET inhibitor design, preclinical research, and conclusions from clinical trials in prostate cancer. We speculate on incorporating BET inhibitors into combination regimens with other agents to improve the therapeutic index of BET inhibition in treating prostate cancer. EXPERT OPINION The therapeutic potential of BET inhibitors for prostate cancer has been demonstrated in preclinical studies. However, further research is needed to identify biomarkers that can predict sensitivity to BET inhibitors and to develop novel, highly selective inhibitors to reduce toxicities. Finally, BET inhibitors are likely to hold the most clinical potential in combination with other agents.
Collapse
Affiliation(s)
- Adel Mandl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Mark C Markowski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
2
|
Moreira-Silva F, Henrique R, Jerónimo C. From Therapy Resistance to Targeted Therapies in Prostate Cancer. Front Oncol 2022; 12:877379. [PMID: 35686097 PMCID: PMC9170957 DOI: 10.3389/fonc.2022.877379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
3
|
Li G, Zheng YH, Xu L, Feng J, Tang HL, Luo C, Song YP, Chen XQ. BRD4 inhibitor nitroxoline enhances the sensitivity of multiple myeloma cells to bortezomib in vitro and in vivo by promoting mitochondrial pathway-mediated cell apoptosis. Ther Adv Hematol 2020; 11:2040620720932686. [PMID: 32551032 PMCID: PMC7281877 DOI: 10.1177/2040620720932686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Multiple myeloma (MM) is the second most common hematological neoplasm. Wide administration of bortezomib significantly improves the survival of MM patients compared with conventional chemotherapy. Bromodomain-containing protein 4 (BRD4) inhibitors also have been demonstrated to retard cell proliferation and induce cellular apoptosis in various cancers. However, it is unclear whether the BRD4 inhibitor nitroxoline plus bortezomib has a synergistic anti-tumor effect on MM. Methods Cell viability was determined via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle and cell apoptosis were assessed via flow cytometry. Protein expression levels were determined via western blotting. The expression of apoptosis-related proteins in xenograft tissue were detected by means of immunohistochemistry. Results Treatment with nitroxoline or bortezomib suppressed cell proliferation, and caused G0/G1 phase arrest and apoptosis in H929 and RPMI8226 cells. Furthermore, nitroxoline intensified the retardation of cell proliferation, as well as further enhanced the G0/G1 phase arrest and apoptosis induced by bortezomib in H929 and RPMI8226 cells. The western blot analysis revealed that nitroxoline or bortezomib treatment markedly diminished the levels of Bcl-2 and cyclin D1, and increased the levels of p21, Bax, cleaved PARP and cleaved caspase-3. Combination of these two agents was observed to result in further marked changes on these levels compared with nitroxoline or bortezomib treatment alone. What is more, in the xenograft tumor model, combinative treatment markedly inhibited tumor growth compared with the single drug treatment. Conclusion Combination of bortezomib with nitroxoline has a synergistic anti-tumor activity in MM cells and may be a novel treatment method for MM.
Collapse
Affiliation(s)
- Guang Li
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan-Hua Zheng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Xu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Feng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hai-Long Tang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Yan-Ping Song
- Institute of Hematology, Xi'an Central Hospital, 161 Xiwu Road, Xi'an, Shaanxi 710003, P.R. China
| | - Xie-Qun Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
4
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
5
|
I-BET726 suppresses human skin squamous cell carcinoma cell growth in vitro and in vivo. Cell Death Dis 2020; 11:318. [PMID: 32371868 PMCID: PMC7200671 DOI: 10.1038/s41419-020-2515-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) is a potential therapeutic target of skin squamous cell carcinoma (SCC). I-BET726 is a novel BRD4 inhibitor. Its potential effect in skin SCC cells was tested in the present study. We show that I-BET726 potently inhibited survival, proliferation, cell cycle progression, and migration in established (A431/SCC-9/SCC-12/SCC-13 lines) and primary human skin SCC cells. I-BET726 induced significant apoptosis activation in skin SCC cells. It was more efficient in inhibiting skin SCC cells than known BRD4 inhibitors (JQ1, CPI203, and AZD5153). I-BET726 not only downregulated BRD4-regulated proteins (c-Myc, Bcl-2, and cyclin D1), but also inhibited sphingosine kinase 1 (SphK1) and Akt signalings in SCC cells. Restoring Akt activation, by a constitutively active S473D mutant Akt1 (“caAkt1”), partially inhibited I-BET726-induced cytotoxicity in A431 cells. In vivo, I-BET726 oral administration potently inhibited A431 xenograft growth in severe combined immunodeficient mice. Downregulation of BRD4-regulated proteins and inhibition of the SphK1-Akt signaling were detected in I-BET726-treated A431 xenograft tumor tissues. Together, I-BET726 inhibits skin SCC cell growth in vitro and in vivo.
Collapse
|
6
|
He L, Chen C, Gao G, Xu K, Ma Z. ARV-825-induced BRD4 protein degradation as a therapy for thyroid carcinoma. Aging (Albany NY) 2020; 12:4547-4557. [PMID: 32163373 PMCID: PMC7093165 DOI: 10.18632/aging.102910] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/05/2020] [Indexed: 04/08/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) is overexpressed in thyroid carcinoma, represents as an important therapeutic target. ARV-825 is a novel cereblon-based PROTAC (Proteolysis Targeting Chsimera) compound. It can induce fast and sustained BRD4 protein degradation. Its potential effect in human thyroid carcinoma cells was studied here. In TPC-1 cells and primary human thyroid carcinoma cells, ARV-825 potently inhibited cell viability, proliferation and migration. Furthermore, ARV-825 induced robust apoptosis activation in the thyroid carcinoma cells. ARV-825 induced BRD4 protein degradation and downregulation of its targets, including c-Myc, Bcl-xL and cyclin D1 in thyroid carcinoma cells. It was significantly more potent in inhibiting thyroid carcinoma cells than the known small molecule BRD4 inhibitors. In vivo studies demonstrated that ARV-825 oral administration potently suppressed TPC-1 xenograft tumor growth in severe combined immunodeficient mice. BRD4 protein degradation as well as c-Myc, Bcl-xL and cyclin D1 downregulation were detected in ARV-825-treated TPC-1 tumor tissues. Taken together, ARV-825 induces BRD4 protein degradation and inhibits thyroid carcinoma cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Ling He
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chen Chen
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Guoyu Gao
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Kun Xu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Luo F, Zhou Z, Cai J, Du W. DUB3 Facilitates Growth and Inhibits Apoptosis Through Enhancing Expression of EZH2 in Oral Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1447-1460. [PMID: 32110043 PMCID: PMC7035907 DOI: 10.2147/ott.s230577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background Here, we probed the action mechanism of ubiquitin-specific processing proteases 17 (DUB3) in the evolution of oral squamous cell carcinoma (OSCC). Methods The expression of genes were calculated by qRT-PCR, and proteins were assessed by Western blot and immunohistochemistry. The cells viability and proliferation were checked by MTT and EdU assay, respectively. Flow cytometry was implemented to detect the cell cycle and apoptosis. The activity of EZH2 gene promoter was measured by luciferase reporter assay. Co-immunoprecipitation assay was used to ensure the ubiquitination of bromodomain-containing protein 4 (BRD4). The cell apoptosis of tumor tissues was assessed by TUNEL assay. Results DUB3 was overexpressed in OSCC tissues and cell lines, and negatively correlated with patient’s survival time. DUB3 downregulation could effectively curb OSCC cells viability and proliferation, promote cell apoptosis and the expression of cleaved-caspase-3, cleaved PARP and p21, while inhibit cyclin D1. Besides, DUB3 production was positivity correlated with enhancer of zeste homolog-2 (EZH2) and BRD4. BRD4 downregulation could repress DUB3-induced EZH2 production, and MG132 reversed DUB3 decreasing-mediated BRD4 downregulation. Downregulation of DUB3 promoted BRD4 ubiquitination. DUB3 promoted OSCC cells proliferation, while suppressing apoptosis via facilitating EZH2 production. At last, in vivo experiment indicated that the downregulation of DUB3 significantly inhibited the growth of xenograft tumor. Conclusion In summary, we found that DUB3 enhanced OSCC cells proliferation and xenograft tumor growth, while inhibited their apoptosis via promoting BRD4-mediated upregulation of EZH2. Our study indicated that DUB3 may be an effective anti-cancer target for OSCC therapy.
Collapse
Affiliation(s)
- Fei Luo
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Zunyan Zhou
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Jun Cai
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Wei Du
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| |
Collapse
|
8
|
Abstract
MYC is a master transcriptional regulator that controls almost all cellular processes. Over the last several decades, researchers have strived to define the context-dependent transcriptional gene programs that are controlled by MYC, as well as the mechanisms that regulate MYC function, in an effort to better understand the contribution of this oncoprotein to cancer progression. There are a wealth of data indicating that deregulation of MYC activity occurs in a large number of cancers and significantly contributes to disease progression, metastatic potential, and therapeutic resistance. Although the therapeutic targeting of MYC in cancer is highly desirable, there remain substantial structural and functional challenges that have impeded direct MYC-targeted drug development and efficacy. While efforts to drug the ‘undruggable’ may seem futile given these challenges and considering the broad reach of MYC, significant strides have been made to identify points of regulation that can be exploited for therapeutic purposes. These include targeting the deregulation of MYC transcription in cancer through small-molecule inhibitors that induce epigenetic silencing or that regulate the G-quadruplex structures within the MYC promoter. Alternatively, compounds that disrupt the DNA-binding activities of MYC have been the long-standing focus of many research groups, since this method would prevent downstream MYC oncogenic activities regardless of upstream alterations. Finally, proteins involved in the post-translational regulation of MYC have been identified as important surrogate targets to reduce MYC activity downstream of aberrant cell stimulatory signals. Given the complex regulation of the MYC signaling pathway, a combination of these approaches may provide the most durable response, but this has yet to be shown. Here, we provide a comprehensive overview of the different therapeutic strategies being employed to target oncogenic MYC function, with a focus on post-translational mechanisms.
Collapse
|
9
|
Joshi S, Singh AR, Liu KX, Pham TV, Zulcic M, Skola D, Chun HB, Glass CK, Morales GA, Garlich JR, Durden DL. SF2523: Dual PI3K/BRD4 Inhibitor Blocks Tumor Immunosuppression and Promotes Adaptive Immune Responses in Cancer. Mol Cancer Ther 2019; 18:1036-1044. [PMID: 31018997 DOI: 10.1158/1535-7163.mct-18-1206] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Macrophages (MΘs) are key immune infiltrates in solid tumors and serve as major drivers behind tumor growth, immune suppression, and inhibition of adaptive immune responses in the tumor microenvironment (TME). Bromodomain and extraterminal (BET) protein, BRD4, which binds to acetylated lysine on histone tails, has recently been reported to promote gene transcription of proinflammatory cytokines but has rarely been explored for its role in IL4-driven MΘ transcriptional programming and MΘ-mediated immunosuppression in the TME. Herein, we report that BET bromodomain inhibitor, JQ1, blocks association of BRD4 with promoters of arginase and other IL4-driven MΘ genes, which promote immunosuppression in TME. Pharmacologic inhibition of BRD4 using JQ1 and/or PI3K using dual PI3K/BRD4 inhibitor SF2523 (previously reported by our group as a potent inhibitor to block tumor growth and metastasis in various cancer models) suppresses tumor growth in syngeneic and spontaneous murine cancer models; reduces infiltration of myeloid-derived suppressor cells; blocks polarization of immunosuppressive MΘs; restores CD8+ T-cell activity; and stimulates antitumor immune responses. Finally, our results suggest that BRD4 regulates the immunosuppressive myeloid TME, and BET inhibitors and dual PI3K/BRD4 inhibitors are therapeutic strategies for cancers driven by the MΘ-dependent immunosuppressive TME.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California.
| | - Alok R Singh
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Kevin X Liu
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Timothy V Pham
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Dylan Skola
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | - Hyun Bae Chun
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | - Christopher K Glass
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | | | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California.
- SignalRx Pharmaceuticals, San Diego, California
| |
Collapse
|
10
|
Zhu JX, Xiao JR. SF2523 inhibits human chondrosarcoma cell growth in vitro and in vivo. Biochem Biophys Res Commun 2019; 511:559-565. [PMID: 30824188 DOI: 10.1016/j.bbrc.2019.02.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Abstract
Developing novel therapeutic agents against chondrosarcoma is important. SF2523 is a PI3K-Akt-mTOR and bromodomain-containing protein 4 (BRD4) dual inhibitor. Its activity in human chondrosarcoma cells is tested. Our results show that SF2523 potently inhibited survival, proliferation and migration, and induced apoptosis activation in SW1353 cells and primary human chondrosarcoma cells. The dual inhibitor was yet non-cytotoxic to the primary human osteoblasts and OB-6 osteoblastic cells. SF2523 blocked Akt-mTOR activation and downregulated BRD4-regulated genes (Bcl-2 and c-Myc) in chondrosarcoma cells. It was more efficient in killing chondrosarcoma cells than other established PI3K-Akt-mTOR and BRD4 inhibitors, including JQ1, perifosine and OSI-027. In vivo, intraperitoneal injection of SF2523 (30 mg/kg) potently inhibited subcutaneous SW1353 xenograft tumor growth in severe combined immunodeficient mice. Akt-mTOR inhibition as well as Bcl-2 and c-Myc downregulation were detected in SF2523-treated SW1353 tumor tissues. In conclusion, targeting PI3K-Akt-mTOR and BRD4 by SF2523 potently inhibited chondrosarcoma cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Jia-Xue Zhu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian-Ru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
11
|
Joshi S, Durden DL. Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. JOURNAL OF ONCOLOGY 2019; 2019:5245034. [PMID: 30853982 PMCID: PMC6377965 DOI: 10.1155/2019/5245034] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/15/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy, including immune checkpoint blockade and adoptive CAR T-cell therapy, has clearly established itself as an important modality to treat melanoma and other malignancies. Despite the tremendous clinical success of immunotherapy over other cancer treatments, this approach has shown substantial benefit to only some of the patients while the rest of the patients have not responded due to immune evasion. In recent years, a combination of cancer immunotherapy together with existing anticancer treatments has gained significant attention and has been extensively investigated in preclinical or clinical studies. In this review, we discuss the therapeutic potential of novel regimens combining immune checkpoint inhibitors with therapeutic interventions that (1) increase tumor immunogenicity such as chemotherapy, radiotherapy, and epigenetic therapy; (2) reverse tumor immunosuppression such as TAMs, MDSCs, and Tregs targeted therapy; and (3) reduce tumor burden and increase the immune effector response with rationally designed dual or triple inhibitory chemotypes.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Donald L. Durden
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Moores Cancer Center, University of California, San Diego, CA, USA
- SignalRx Pharmaceuticals, Inc., San Diego, CA, USA
| |
Collapse
|
12
|
Dahiya NR, Chandrasekaran B, Kolluru V, Ankem M, Damodaran C, Vadhanam MV. A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Mol Carcinog 2018; 57:1332-1341. [PMID: 30069922 DOI: 10.1002/mc.22848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022]
Abstract
Androgen ablation therapy is the primary therapeutic option for locally advanced and metastatic castration-resistant prostate cancer (CRPC). We investigated therapeutic effect of a dietary metabolite Urolithin A (UroA) and dissected the molecular mechanism in CRPC cells. Treatment with UroA inhibited cell proliferation in both androgen receptor-positive (AR+ ) (C4-2B) and androgen receptor-negative (AR- ) (PC-3) cells however, AR+ CaP cells were more sensitive to UroA treatment as compared with AR- CaP cells. Inhibition of the AR signaling was responsible for the UroA effect on AR+ CaP cells. Ectopic expression of AR in PC-3 cells sensitized them to UroA treatment as compared to the vector-expresseing PC-3 cells, which suggests that AR could be a target of UroA. Similarly, in enzalutamide-resistant C4-2B cells, a downregulation of AR expression also suppressed cell proliferation which was observed with the UroA treatment. Oral administration of UroA significantly suppressed the growth of C4-2B xenografts (P = 0.05) compared with PC-3 xenografts (P = 0.069) without causing toxicity to animals. Immunohistochemistry analysis confirmed in vitro findings such as downregulation of AR/pAKT signaling in UroA-treated C4-2B tumors, which suggests that UroA may be a potent chemo-preventive and therapeutic agent for CRPC.
Collapse
Affiliation(s)
- Nisha R Dahiya
- Department of Urology, University of Louisville, Louisville, Kentucky
| | | | - Venkatesh Kolluru
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Murali Ankem
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Manicka V Vadhanam
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky
| |
Collapse
|