1
|
Peng Z, Ma J, Christov CZ, Karabencheva-Christova T, Lehnert N, Li D. Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families. DNA 2023; 3:65-84. [PMID: 38698914 PMCID: PMC11065319 DOI: 10.3390/dna3020005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Nucleic acid methylations are important genetic and epigenetic biomarkers. The formation and removal of these markers is related to either methylation or demethylation. In this review, we focus on the demethylation or oxidative modification that is mediated by the 2-oxoglutarate (2-OG)/Fe(II)-dependent AlkB/TET family enzymes. In the catalytic process, most enzymes oxidize 2-OG to succinate, in the meantime oxidizing methyl to hydroxymethyl, leaving formaldehyde and generating demethylated base. The AlkB enzyme from Escherichia coli has nine human homologs (ALKBH1-8 and FTO) and the TET family includes three members, TET1 to 3. Among them, some enzymes have been carefully studied, but for certain enzymes, few studies have been carried out. This review focuses on the kinetic properties of those 2-OG/Fe(II)-dependent enzymes and their alkyl substrates. We also provide some discussions on the future directions of this field.
Collapse
Affiliation(s)
- Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jian Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | | | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
2
|
Zhang Y, Ni J, Gao Y. RF-SVM: Identification of DNA-binding proteins based on comprehensive feature representation methods and support vector machine. Proteins 2021; 90:395-404. [PMID: 34455627 DOI: 10.1002/prot.26229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023]
Abstract
Protein-DNA interactions play an important role in biological progress, such as DNA replication, repair, and modification processes. In order to have a better understanding of its functions, the one of the most important steps is the identification of DNA-binding proteins. We propose a DNA-binding protein predictor, namely, RF-SVM, which contains four types features, that is, pseudo amino acid composition (PseAAC), amino acid distribution (AAD), adjacent amino acid composition frequency (ACF) and Local-DPP. Random Forest algorithm is utilized for selecting top 174 features, which are established the predictor model with the support vector machine (SVM) on training dataset UniSwiss-Tr. Finally, RF-SVM method is compared with other existing methods on test dataset UniSwiss-Tst. The experimental results demonstrated that RF-SVM has accuracy of 84.25%. Meanwhile, we discover that the physicochemical properties of amino acids for OOBM770101(H), CIDH920104(H), MIYS990104(H), NISK860101(H), VINM940103(H), and SNEP660101(A) have contribution to predict DNA-binding proteins. The main code and datasets can gain in https://github.com/NiJianWei996/RF-SVM.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Mathematics, School of Science, Hebei University of Engineering, Handan, China
| | - Jianwei Ni
- Department of Mathematics, School of Science, Hebei University of Engineering, Handan, China
| | - Ya Gao
- Department of Mathematics, School of Science, Hebei University of Engineering, Handan, China
| |
Collapse
|
3
|
Xu B, Liu D, Wang Z, Tian R, Zuo Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell Mol Life Sci 2021; 78:129-141. [PMID: 32642789 PMCID: PMC11072825 DOI: 10.1007/s00018-020-03594-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022]
Abstract
AlkB homologs (ALKBH) are a family of specific demethylases that depend on Fe2+ and α-ketoglutarate to catalyze demethylation on different substrates, including ssDNA, dsDNA, mRNA, tRNA, and proteins. Previous studies have made great progress in determining the sequence, structure, and molecular mechanism of the ALKBH family. Here, we first review the multi-substrate selectivity of the ALKBH demethylase family from the perspective of sequence and structural evolution. The construction of the phylogenetic tree and the comparison of key loops and non-homologous domains indicate that the paralogs with close evolutionary relationship have similar domain compositions. The structures show that the lack and variations of four key loops change the shape of clefts to cause the differences in substrate affinity, and non-homologous domains may be related to the compatibility of multiple substrates. We anticipate that the new insights into selectivity determinants of the ALKBH family are useful for understanding the demethylation mechanisms.
Collapse
Affiliation(s)
- Baofang Xu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Dongyang Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zerong Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruixia Tian
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
4
|
Li H, Zhang Y, Guo Y, Liu R, Yu Q, Gong L, Liu Z, Xie W, Wang C. ALKBH1 promotes lung cancer by regulating m6A RNA demethylation. Biochem Pharmacol 2020; 189:114284. [PMID: 33068553 DOI: 10.1016/j.bcp.2020.114284] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023]
Abstract
Lung cancer has surpassed breast cancer as the leading cause of cancer death in females in developed countries and the leading cause of cancer death in males. Despite extensive research on lung cancer, the pathogenesis of lung cancer is not fully understood. ALKBH1 is a 2-oxoglutarate and Fe (II)-dependent dioxygenase responsible for the demethylation of 6-methyladenine (m6A) in RNA and is essential to multiple cellular processes in human. Numerous recent studies suggest that ALKBH1 plays a role in tumorigenesis and tumor progression, but the role of ALKBH1 in lung cancer is largely unknown. In this study, we demonstrated that the expression levels of ALKBH1 in lung cancer tissues and cells were up regulated. The invasion and migration abilities of lung cancer cells were significantly suppressed in vitro upon the silencing of ALKBH1 while they were significantly promoted upon its overexpression. We next characterized the enzyme biochemically by analyzing the contribution of essential residues Y184, H231, D233, H287, R338, and R344 to its m6A demethylation activity. Lastly, our 3.1-Å crystal structure of mouse ALKBH1 revealed that the N-terminal domain of the protein forms close contacted with the core catalytic domain and might be responsible for the recognition of nucleic acid substrates. In summary, our combined cellular, biochemical, and structural results provide insight into the potential ALKBH1-based drug design for cancer therapies.
Collapse
Affiliation(s)
- Hong Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province 475004, China
| | - Ying Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yajuan Guo
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rong Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lingzhi Gong
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510006, China.
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
5
|
Van Deuren V, Plessers S, Robben J. Structural determinants of nucleobase modification recognition in the AlkB family of dioxygenases. DNA Repair (Amst) 2020; 96:102995. [PMID: 33069898 DOI: 10.1016/j.dnarep.2020.102995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/29/2023]
Abstract
Iron-dependent dioxygenases of the AlkB protein family found in most organisms throughout the tree of life play a major role in oxidative dealkylation processes. Many of these enzymes have attracted the attention of researchers across different fields and have been subjected to thorough biochemical characterization because of their link to human health and disease. For example, several mammalian AlkB homologues are involved in the direct reversal of alkylation damage in DNA, while others have been shown to play a regulatory role in epigenetic or epitranscriptomic nucleic acid methylation or in post-translational modifications such as acetylation of actin filaments. These studies show that that divergence in amino acid sequence and structure leads to different characteristics and substrate specificities. In this review, we aim to summarize current insights in the structural features involved in the substrate selection of AlkB homologues, with focus on nucleic acid interactions.
Collapse
Affiliation(s)
- V Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium
| | - S Plessers
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium
| | - J Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001, Heverlee, Belgium.
| |
Collapse
|
6
|
Single-stranded DNA damage: Protecting the single-stranded DNA from chemical attack. DNA Repair (Amst) 2020; 87:102804. [PMID: 31981739 DOI: 10.1016/j.dnarep.2020.102804] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 01/08/2023]
Abstract
Cellular processes, such as DNA replication, recombination and transcription, require DNA strands separation and single-stranded DNA is formation. The single-stranded DNA is promptly wrapped by human single-stranded DNA binding proteins, replication protein A (RPA) complex. RPA binding not only prevent nuclease degradation and annealing, but it also coordinates cell-cycle checkpoint activation and DNA repair. However, RPA binding offers little protection against the chemical modification of DNA bases. This review focuses on the type of DNA base damage that occurs in single-stranded DNA and how the damage is rectified in human cells. The discovery of DNA repair proteins, such as ALKBH3, AGT, UNG2, NEIL3, being able to repair the damaged base in the single-stranded DNA, renewed the interest to study single-stranded DNA repair. These mechanistically different proteins work independently from each other with the overarching goal of increasing fidelity of recombination and promoting error-free replication.
Collapse
|
7
|
Mohan M, Akula D, Dhillon A, Goyal A, Anindya R. Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. Nucleic Acids Res 2019; 47:11729-11745. [PMID: 31642493 PMCID: PMC7145530 DOI: 10.1093/nar/gkz938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The integrity of our DNA is challenged daily by a variety of chemicals that cause DNA base alkylation. DNA alkylation repair is an essential cellular defence mechanism to prevent the cytotoxicity or mutagenesis from DNA alkylating chemicals. Human oxidative demethylase ALKBH3 is a central component of alkylation repair, especially from single-stranded DNA. However, the molecular mechanism of ALKBH3-mediated damage recognition and repair is less understood. We report that ALKBH3 has a direct protein-protein interaction with human RAD51 paralogue RAD51C. We also provide evidence that RAD51C-ALKBH3 interaction stimulates ALKBH3-mediated repair of methyl-adduct located within 3'-tailed DNA, which serves as a substrate for the RAD51 recombinase. We further show that the lack of RAD51C-ALKBH3 interaction affects ALKBH3 function in vitro and in vivo. Our data provide a molecular mechanism underlying upstream events of alkyl adduct recognition and repair by ALKBH3.
Collapse
Affiliation(s)
- Monisha Mohan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Deepa Akula
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Arun Dhillon
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
8
|
Mohan M, Pandya V, Anindya R. Escherichia coli AlkB and single-stranded DNA binding protein SSB interaction explored by Molecular Dynamics Simulation. J Mol Graph Model 2018; 84:29-35. [DOI: 10.1016/j.jmgm.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
|
9
|
Escherichia coli AlkB interacts with single-stranded DNA binding protein SSB by an intrinsically disordered region of SSB. Mol Biol Rep 2018; 45:865-870. [PMID: 29974396 DOI: 10.1007/s11033-018-4232-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Intrinsically disordered regions (IDRs) of proteins often regulate function through interactions with folded domains. Escherichia coli single-stranded DNA binding protein SSB binds and stabilizes single-stranded DNA (ssDNA). The N-terminal of SSB contains characteristic OB (oligonucleotide/oligosaccharide-binding) fold which binds ssDNA tightly but non-specifically. SSB also forms complexes with a large number proteins via the C-terminal interaction domain consisting mostly of acidic amino acid residues. The amino acid residues located between the OB-fold and C-terminal acidic domain are known to constitute an IDR and no functional significance has been attributed to this region. Although SSB is known to bind many DNA repair protein, it is not known whether it binds to DNA dealkylation repair protein AlkB. Here, we characterize AlkB SSB interaction and demonstrate that SSB binds to AlkB via the IDR. We have established that AlkB-SSB interaction by in vitro pull-down and yeast two-hybrid analysis. We mapped the site of contact to be the residues 152-169 of SSB. Unlike most of the SSB-binding proteins which utilize C-terminal acidic domain for interaction, IDR of SSB is necessary and sufficient for AlkB interaction.
Collapse
|