1
|
Chang Y, Zeng X, Peng S, Lai R, Yang M, Wang D, Zhou X, Shao Y. All-or-None Selectivity in Probing Polarity-Determined Trinucleotide Repeat Foldings with a Parity Resolution by a Beyond-Size-Matching Ligand. Anal Chem 2023; 95:3746-3753. [PMID: 36745842 DOI: 10.1021/acs.analchem.2c04810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abnormal amplification of trinucleotide repeats (TNRs) is associated with neurodegenerative diseases by forming a particular hairpin bulge. It is well known that the polarity and parity of TNRs can regulate the formed hairpin structures. Therefore, there is a great challenge to efficiently discriminate the hairpin structures of TNRs with substantial selectivity. Herein, we developed a fluorescent ligand of pseudohypericin (Pse) with a beyond-size-matching (BSM) geometry to selectively sense hairpin structures of GTC and CTG TNRs. The GTC hairpin structures can bind with Pse dominantly at extreme T-T mismatches by the virtue of their most extrahelical conformations, while there is no binding event to occur with the polarity-inverted counterpart CTG hairpin structures because of the limited space provided by their intrahelical T-T mismatches. In addition, this all-or-none response with the polarity-dependent folding (PoDF) is independent of the length of these TNRs. Interestingly, the parity-dependent folding (PaDF) of GTC hairpin structures can also be resolved. Besides pure TNRs, the competency of this BSM ligand to sense the PoDF and PaDF effects was also generalized to DNAs with TNRs occurring at loop and stem end regions. To our knowledge, this is the first experimental observation with the state-of-the-art performance over the fluorescence measurement of PoDF and PaDF in TNRs. Our work provides an expedient way to elucidate the TNR folding by designing ligands having BSM features.
Collapse
Affiliation(s)
- Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
2
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
3
|
Takahashi S, Matsumoto S, Chilka P, Ghosh S, Okura H, Sugimoto N. Dielectricity of a molecularly crowded solution accelerates NTP misincorporation during RNA-dependent RNA polymerization by T7 RNA polymerase. Sci Rep 2022; 12:1149. [PMID: 35064200 PMCID: PMC8782835 DOI: 10.1038/s41598-022-05136-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022] Open
Abstract
In biological systems, the synthesis of nucleic acids, such as DNA and RNA, is catalyzed by enzymes in various aqueous solutions. However, substrate specificity is derived from the chemical properties of the residues, which implies that perturbations of the solution environment may cause changes in the fidelity of the reaction. Here, we investigated non-promoter-based synthesis of RNA using T7 RNA polymerase (T7 RNAP) directed by an RNA template in the presence of polyethylene glycol (PEG) of various molecular weights, which can affect polymerization fidelity by altering the solution properties. We found that the mismatch extensions of RNA propagated downstream polymerization. Furthermore, PEG promoted the polymerization of non-complementary ribonucleoside triphosphates, mainly due to the decrease in the dielectric constant of the solution. These results indicate that the mismatch extension of RNA-dependent RNA polymerization by T7 RNAP is driven by the stacking interaction of bases of the primer end and the incorporated nucleotide triphosphates (NTP) rather than base pairing between them. Thus, proteinaceous RNA polymerase may display different substrate specificity with changes in dielectricity caused by molecular crowding conditions, which can result in increased genetic diversity without proteinaceous modification.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Pallavi Chilka
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Saptarshi Ghosh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Hiromichi Okura
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| |
Collapse
|
4
|
Oliveira LM, Long AS, Brown T, Fox KR, Weber G. Melting temperature measurement and mesoscopic evaluation of single, double and triple DNA mismatches. Chem Sci 2020; 11:8273-8287. [PMID: 34094181 PMCID: PMC8163305 DOI: 10.1039/d0sc01700k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unlike the canonical base pairs AT and GC, the molecular properties of mismatches such as hydrogen bonding and stacking interactions are strongly dependent on the identity of the neighbouring base pairs. As a result, due to the sheer number of possible combinations of mismatches and flanking base pairs, only a fraction of these have been studied in varying experiments or theoretical models. Here, we report on the melting temperature measurement and mesoscopic analysis of contiguous DNA mismatches in nearest-neighbours and next-nearest neighbour contexts. A total of 4032 different mismatch combinations, including single, double and triple mismatches were covered. These were compared with 64 sequences containing all combinations of canonical base pairs in the same location under the same conditions. For a substantial number of single mismatch configurations, 15%, the measured melting temperatures were higher than the least stable AT base pair. The mesoscopic calculation, using the Peyrard-Bishop model, was performed on the set of 4096 sequences, and resulted in estimates of on-site and nearest-neighbour interactions that can be correlated to hydrogen bonding and base stacking. Our results confirm many of the known properties of mismatches, including the peculiar sheared stacking of tandem GA mismatches. More intriguingly, it also reveals that a number of mismatches present strong hydrogen bonding when flanked on both sites by other mismatches. To highlight the applicability of our results, we discuss a number of practical situations such as enzyme binding affinities, thymine DNA glycosylase repair activity, and trinucleotide repeat expansions.
Collapse
Affiliation(s)
- Luciana M Oliveira
- Departamento de Física, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte MG Brazil +55 31 3409 5600 +55 31 3409 6616
| | - Adam S Long
- School of Biological Sciences, University of Southampton Life Sciences Building 85 Southampton SO17 1BJ UK
| | - Tom Brown
- Department of Chemistry, University of Oxford Oxford UK
| | - Keith R Fox
- School of Biological Sciences, University of Southampton Life Sciences Building 85 Southampton SO17 1BJ UK
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte MG Brazil +55 31 3409 5600 +55 31 3409 6616
| |
Collapse
|
5
|
Teng Y, Tateishi-Karimata H, Sugimoto N. RNA G-Quadruplexes Facilitate RNA Accumulation in G-Rich Repeat Expansions. Biochemistry 2020; 59:1972-1980. [DOI: 10.1021/acs.biochem.0c00130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ye Teng
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 minatojima-minamimachi, Kobe 650-0047, Japan
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin 130117, China
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 minatojima-minamimachi, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 minatojima-minamimachi, Kobe 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan
| |
Collapse
|
6
|
Takahashi S, Okura H, Chilka P, Ghosh S, Sugimoto N. Molecular crowding induces primer extension by RNA polymerase through base stacking beyond Watson–Crick rules. RSC Adv 2020; 10:33052-33058. [PMID: 35515060 PMCID: PMC9056655 DOI: 10.1039/d0ra06502a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
The polymerisation of nucleic acids is essential for copying genetic information correctly to the next generations, whereas mispolymerisation could promote genetic diversity. It is possible that in the prebiotic era, polymerases might have used mispolymerisation to accelerate the diversification of genetic information. Even in the current era, polymerases of RNA viruses frequently cause mutations. In this study, primer extension under different molecular crowding conditions was measured using T7 RNA polymerase as a model for the reaction in the prebiotic world. Interestingly, molecular crowding using 20 wt% poly(ethylene glycol) 2000 preferentially promoted the primer extensions with ATP and GTP by T7 RNA polymerase, regardless of Watson–Crick base-pairing rules. This indicates that molecular crowding decreases the dielectric constants in solution, resulting in enhancement of stacking interactions between the primer and an incorporated nucleotide. These findings suggest that molecular crowding could accelerate genetic diversity in the prebiotic world and may promote transcription error of RNA viruses in the current era. Primer extension by T7 RNA polymerase showed preference of monomer through base stacking beyond Watson–Crick rules under molecular crowding condition.![]()
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
| | - Hiromichi Okura
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
| | - Pallavi Chilka
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
| | - Saptarshi Ghosh
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe 650-0047
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
7
|
Ghosh S, Takahashi S, Endoh T, Tateishi-Karimata H, Hazra S, Sugimoto N. Validation of the nearest-neighbor model for Watson-Crick self-complementary DNA duplexes in molecular crowding condition. Nucleic Acids Res 2019; 47:3284-3294. [PMID: 30753582 PMCID: PMC6468326 DOI: 10.1093/nar/gkz071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/03/2023] Open
Abstract
Recent advancement in nucleic acid techniques inside cells demands the knowledge of the stability of nucleic acid structures in molecular crowding. The nearest-neighbor model has been successfully used to predict thermodynamic parameters for the formation of nucleic acid duplexes, with significant accuracy in a dilute solution. However, knowledge about the applicability of the model in molecular crowding is still limited. To determine and predict the stabilities of DNA duplexes in a cell-like crowded environment, we systematically investigated the validity of the nearest-neighbor model for Watson–Crick self-complementary DNA duplexes in molecular crowding. The thermodynamic parameters for the duplex formation were measured in the presence of 40 wt% poly(ethylene glycol)200 for different self-complementary DNA oligonucleotides consisting of identical nearest-neighbors in a physiological buffer containing 0.1 M NaCl. The thermodynamic parameters as well as the melting temperatures (Tm) obtained from the UV melting studies revealed similar values for the oligonucleotides having identical nearest-neighbors, suggesting the validity of the nearest-neighbor model in the crowding condition. Linear relationships between the measured ΔG°37 and Tm in crowding condition and those predicted in dilute solutions allowed us to predict ΔG°37, Tm and nearest-neighbor parameters in molecular crowding using existing parameters in the dilute condition, which provides useful information about the thermostability of the self-complementary DNA duplexes in molecular crowding.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Soumitra Hazra
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|