1
|
Chaudhry S, Castro JR, Totiger TM, Afaghani J, Khurshid R, Nicholls M, Zhang Z, Schürer SC, Shah A, Taylor J, Feng Y. Potent, Selective, and Orally Bioavailable Quinazoline-Based STK17A/B Dual Inhibitors. ACS Med Chem Lett 2024; 15:945-949. [PMID: 38894933 PMCID: PMC11181493 DOI: 10.1021/acsmedchemlett.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
STK17A is a novel uncharacterized member of the death-associated protein family of serine and threonine kinases. Overexpression of STK17A is observed in many cancers. We identified a lead compound that is based on a quinazoline core. Optimizations of the lead compound led to the discovery of potent and selective STK17A/B inhibitors with drug-like properties and oral bioavailability. Compound 9 had an STK17A inhibitory IC50 of 23 nM. Based on profiling studies against two wild-type kinase panels (375 and 398 kinases, respectively), compound 9 had strong inhibition of both STK17A and STK17B but moderate off-target inhibition only for AAK1, MYLK4, and NEK3/5. In addition, compound 9 had good oral bioavailability, paving the way for in vivo studies against various cancers.
Collapse
Affiliation(s)
- Sana Chaudhry
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
| | - Jesus R. Castro
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
| | - Tulasigeri M. Totiger
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
| | - Jumana Afaghani
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
| | - Rabia Khurshid
- Department
of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Miah Nicholls
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
| | - Ziming Zhang
- Department
of Chemistry, University of Miami, Miami, Florida 33146, United
State
| | - Stephan C. Schürer
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
- Department
of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Ashish Shah
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
| | - Justin Taylor
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
| | - Yangbo Feng
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida33136, United States
- Department
of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
2
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Kurz CG, Preuss F, Tjaden A, Cusack M, Amrhein JA, Chatterjee D, Mathea S, Berger LM, Berger BT, Krämer A, Weller M, Weiss T, Müller S, Knapp S, Hanke T. Illuminating the Dark: Highly Selective Inhibition of Serine/Threonine Kinase 17A with Pyrazolo[1,5- a]pyrimidine-Based Macrocycles. J Med Chem 2022; 65:7799-7817. [PMID: 35608370 DOI: 10.1021/acs.jmedchem.2c00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine/threonine kinase 17A (death-associated protein kinase-related apoptosis-inducing protein kinase 1─DRAK1) is a part of the death-associated protein kinase (DAPK) family and belongs to the so-called dark kinome. Thus, the current state of knowledge of the cellular function of DRAK1 and its involvement in pathophysiological processes is very limited. Recently, DRAK1 has been implicated in tumorigenesis of glioblastoma multiforme (GBM) and other cancers, but no selective inhibitors of DRAK1 are available yet. To this end, we optimized a pyrazolo[1,5-a]pyrimidine-based macrocyclic scaffold. Structure-guided optimization of this macrocyclic scaffold led to the development of CK156 (34), which displayed high in vitro potency (KD = 21 nM) and selectivity in kinomewide screens. Crystal structures demonstrated that CK156 (34) acts as a type I inhibitor. However, contrary to studies using genetic knockdown of DRAK1, we have seen the inhibition of cell growth of glioma cells in 2D and 3D culture only at low micromolar concentrations.
Collapse
Affiliation(s)
- Christian G Kurz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Martin Cusack
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany.,Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, Frankfurt 60596, Germany
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| |
Collapse
|
4
|
Xu Y, Feng Y, Li S, Sun J. Identification and characterization of apoptosis-related gene serine/threonine kinase 17A (STK17A) from Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2020; 98:1008-1016. [PMID: 31740399 DOI: 10.1016/j.fsi.2019.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Apoptosis plays important roles in regulation of the immune response and has a direct impact on disease resistance in teleost. Death associated protein kinase (DAPK)-related Serine/Threonine kinase 17A (STK17A) is a positive apoptosis regulator. However, the expression and function of STK17A in fish still remains uninvestigated. In this study, we identified and characterized a STK17A gene (termed PoSTK17A) from Japanese flounder Paralichthys olivaceus. We also investigated the pro-apoptotic role of PoSTK17A in fish. Real-time quantitative PCR analysis revealed that PoSTK17A is widely present in various Japanese flounder tissues, and dominantly expressed in liver. Immune challenge experiments showed that PoSTK17A expression was upregulated by inflammatory challenge, Edwardsiella tarda infection and DNA-damaging agent cisplatin treatment as well. Immunofluorescence microscopy revealed that the recombinant PoSTK17A proteins are mainly located in the nucleus of Japanese flounder FG-9307 cells, and human Hela and MCF7 cells. However, PoSTK17A was translocated from the nucleus to cytoplasm following cisplatin treatment. Overexpression of PoSTK17A significantly increased the apoptosis in human MCF7 cells through both cisplatin-dependent and independent manners. Importantly, PoSTK17A also promotes the ATP-gated P2X7 receptor-mediated apoptosis in Japanese flounder FG-9307 cells. Collectively, we characterized an inducible STK17A gene (PoSTK17A) that may play a conserved pro-apoptotic role in fish.
Collapse
Affiliation(s)
- Yaqi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
5
|
Manivannan P, Reddy V, Mukherjee S, Clark KN, Malathi K. RNase L Induces Expression of A Novel Serine/Threonine Protein Kinase, DRAK1, to Promote Apoptosis. Int J Mol Sci 2019; 20:E3535. [PMID: 31330998 PMCID: PMC6679093 DOI: 10.3390/ijms20143535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 11/28/2022] Open
Abstract
Apoptosis of virus-infected cells is an effective antiviral mechanism in addition to interferon induction to establish antiviral state to restrict virus spread. The interferon-inducible 2'-5' oligoadenylate synthetase/RNase L pathway results in activation of RNase L in response to double stranded RNA and cleaves diverse RNA substrates to amplify interferon induction and promote apoptosis. Here we show that RNase L induces expression of Death-associated protein kinase-Related Apoptosis-inducing protein Kinase 1 (DRAK1), a member of the death-associated protein kinase family and interferon-signaling pathway is required for induction. Overexpression of DRAK1 triggers apoptosis in the absence of RNase L activation by activating c-Jun N-terminal kinase (JNK), translocation of BCL2 Associated X (Bax) to the mitochondria accompanied by cytochrome C release and loss of mitochondrial membrane potential promoting cleavage of caspase 3 and Poly(ADP-Ribose) Polymerase 1 (PARP). Inhibitors of JNK and caspase 3 promote survival of DRAK1 overexpressing cells demonstrating an important role of JNK signaling pathway in DRAK1-mediated apoptosis. DRAK1 mutant proteins that lack kinase activity or nuclear localization fail to induce apoptosis highlighting the importance of cellular localization and kinase function in promoting cell death. Our studies identify DRAK1 as a mediator of RNase L-induced apoptosis.
Collapse
Affiliation(s)
- Praveen Manivannan
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Vidita Reddy
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Sushovita Mukherjee
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Kirsten Neytania Clark
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Krishnamurthy Malathi
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
| |
Collapse
|
6
|
Short SP, Thompson JJ, Bilotta AJ, Chen X, Revetta FL, Washington MK, Williams CS. Serine Threonine Kinase 17A Maintains the Epithelial State in Colorectal Cancer Cells. Mol Cancer Res 2019; 17:882-894. [PMID: 30655319 PMCID: PMC6941354 DOI: 10.1158/1541-7786.mcr-18-0990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 01/08/2023]
Abstract
Serine threonine kinase 17A (STK17A) is a ubiquitously expressed kinase originally identified as a regulator of apoptosis; however, whether it functionally contributes to colorectal cancer has not been established. Here, we have analyzed STK17A in colorectal cancer and demonstrated decreased expression of STK17A in primary tumors, which is further reduced in metastatic lesions, indicating a potential role in regulating the metastatic cascade. Interestingly, changes in STK17A expression did not modify proliferation, apoptosis, or sensitivity of colorectal cancer cell lines to treatment with the chemotherapeutic 5-fluorouracil. Instead, STK17A knockdown induced a robust mesenchymal phenotype consistent with the epithelial-mesenchymal transition, including spindle-like cell morphology, decreased expression of adherens junction proteins, and increased migration and invasion. Additionally, overexpression of STK17A decreased cell size and induced widespread membrane blebbing, a phenotype often associated with activation of cell contractility. Indeed, STK17A-overexpressing cells displayed heightened phosphorylation of myosin light chain in a manner dependent on STK17A catalytic activity. Finally, patient-derived tumor organoid cultures were used to more accurately determine STK17A's effect in primary human tumor cells. Loss of STK17A induced morphologic changes, decreased E-cadherin, increased invasion, and augmented organoid attachment on 2D substrates, all together suggesting a more metastatic phenotype. Collectively, these data indicate a novel role for STK17A in the regulation of epithelial phenotypes and indicate its functional contribution to colorectal cancer invasion and metastasis. IMPLICATIONS: Loss of serine threonine kinase 17A occurs in colorectal cancer metastasis, induces mesenchymal morphologies, and contributes to tumor cell invasion and migration in colorectal cancer.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Joshua J Thompson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Anthony J Bilotta
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xi Chen
- Department of Public Health Sciences and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Frank L Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee.
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
7
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|