1
|
Funato N, Heliövaara A, Boeckx C. A regulatory variant impacting TBX1 expression contributes to basicranial morphology in Homo sapiens. Am J Hum Genet 2024; 111:939-953. [PMID: 38608674 PMCID: PMC11080286 DOI: 10.1016/j.ajhg.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Changes in gene regulatory elements play critical roles in human phenotypic divergence. However, identifying the base-pair changes responsible for the distinctive morphology of Homo sapiens remains challenging. Here, we report a noncoding single-nucleotide polymorphism (SNP), rs41298798, as a potential causal variant contributing to the morphology of the skull base and vertebral structures found in Homo sapiens. Screening for differentially regulated genes between Homo sapiens and extinct relatives revealed 13 candidate genes associated with basicranial development, with TBX1, implicated in DiGeorge syndrome, playing a pivotal role. Epigenetic markers and in silico analyses prioritized rs41298798 within a TBX1 intron for functional validation. CRISPR editing revealed that the 41-base-pair region surrounding rs41298798 modulates gene expression at 22q11.21. The derived allele of rs41298798 acts as an allele-specific enhancer mediated by E2F1, resulting in increased TBX1 expression levels compared to the ancestral allele. Tbx1-knockout mice exhibited skull base and vertebral abnormalities similar to those seen in DiGeorge syndrome. Phenotypic differences associated with TBX1 deficiency are observed between Homo sapiens and Neanderthals (Homo neanderthalensis). In conclusion, the regulatory divergence of TBX1 contributes to the formation of skull base and vertebral structures found in Homo sapiens.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku 113-8510, Tokyo, Japan; Research Core, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku 113-8510, Tokyo, Japan.
| | - Arja Heliövaara
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, Helsinki University Hospital and Helsinki University, Stenbäckinkatu 11, P.O. Box 281, Helsinki FI-00029 HUS, Finland
| | - Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain; Section of General Linguistics, University of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain; University of Barcelona Institute of Neurosciences, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
| |
Collapse
|
2
|
Taha M, Awny N, Ismail S, Ashaat EA, Senousy MA. Screening and evaluation of TBX20 and CITED2 mutations in children with congenital cardiac septal defects: Correlation with cardiac troponin T and caspase-3. Gene 2023; 882:147660. [PMID: 37481008 DOI: 10.1016/j.gene.2023.147660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Congenital cardiac septal defect (CCSD) is the main type of congenital heart disease and owns a very high mortality rate among newborns. CCSD is controlled by specific transcription factors, including T-box transcription factor 20 (TBX20) and Cbp/P300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 (CITED2) which are key molecular actors in heart development. Here, we screened for mutations in TBX20 and CITED2 genes in Egyptian children with CCSD and assessed their association with CCSD susceptibility and with cardiac troponin T (cTnT) and the apoptotic marker caspase-3 as biochemical markers for CCSD. Thirty unrelated newborns and children affected with CCSD and 30 matched healthy controls with no personal history of cardiac diseases were recruited. Selection criteria were children (<18 years) with any age diagnosed with CCSD using ECHO. Mutational analysis and genotyping were done using PCR-Sanger DNA sequencing technique. Serum cTnT and caspase-3 were analyzed using ELISA. Sequencing analysis identified 2 TBX20 variants (c.766T>C and c.39T>C) in the CCSD and control groups and 2 CITED2 variants (c.12T>C and c.9C>T) in one CCSD patient, while were absent in controls. In silico analysis identified TBX20 c.766T>C (rs3999941) as a missense (F256L) pathogenic variant and the other three variants as synonymous and benign. Compared with controls, TBX20 c.766T>C TC genotype and minor C allele were candidate high-risk factors for CCSD. Besides, serum cTnT and caspase-3 were dramatically elevated in CCSD children compared to controls. TBX20 c.766T>C TC genotype was associated with high cTnT in CCSD children. Conclusively, we advocate TBX20 c.766T>C variant as a potential genetic marker for CCSD which might associate with high cTnT levels. CITED2 genetic variants might have rare incidence among Egyptian CCSD children. Serum cTnT and caspase-3 are useful markers for ascertaining CCSD in children. These data could be exploited in prenatal genetic counseling, pre-implantation genotyping, and therapy of CCSD.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Nourhan Awny
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Somaia Ismail
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
3
|
Diniz BL, Deconte D, Gadelha KA, Glaeser AB, Guaraná BB, de Moura AÁ, Rosa RFM, Zen PRG. Congenital Heart Defects and 22q11.2 Deletion Syndrome: A 20-Year Update and New Insights to Aid Clinical Diagnosis. J Pediatr Genet 2023; 12:113-122. [PMID: 37090828 PMCID: PMC10118709 DOI: 10.1055/s-0043-1763258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/16/2023] [Indexed: 02/19/2023]
Abstract
Congenital heart defects (CHDs) are one of the most prevalent clinical features described in individuals diagnosed with 22q11.2 deletion syndrome (22q11.2DS). Therefore, cardiac malformations may be the main finding to refer for syndrome investigation, especially in individuals with a mild phenotype. Nowadays, different cytogenetic methodologies have emerged and are used routinely in research laboratories. Hence, choosing an efficient technology and providing an accurate interpretation of clinical findings is crucial for 22q11.2DS patient's diagnosis. This systematic review provides an update of the last 20 years of research on 22q11.2DS patients with CHD and the investigation process behind each diagnosis. A search was performed in PubMed, Embase, and LILACS using all entry terms to DiGeorge syndrome, CHDs, and cytogenetic analysis. After screening, 60 papers were eligible for review. We present a new insight of ventricular septal defect as a possible pivotal cardiac finding in individuals with 22q11.2DS. Also, we describe molecular technologies and cardiac evaluation as valuable tools in order to guide researchers in future investigations.
Collapse
Affiliation(s)
- Bruna Lixinski Diniz
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Desirée Deconte
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Kerolainy Alves Gadelha
- Underdegree Program in Biomedicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Andressa Barreto Glaeser
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Bruna Baierle Guaraná
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Department of Internal Medicine, Clinical Genetics Service, Federal University of Health Sciences of Porto Alegre (UFCSPA) and Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS, Brazil
| | - Andreza Ávila de Moura
- Underdegree Program in Biomedicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Fabiano Machado Rosa
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Department of Internal Medicine, Clinical Genetics Service, Federal University of Health Sciences of Porto Alegre (UFCSPA) and Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS, Brazil
| | - Paulo Ricardo Gazzola Zen
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
- Department of Internal Medicine, Clinical Genetics Service, Federal University of Health Sciences of Porto Alegre (UFCSPA) and Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Alhazmi S, Alzahrani M, Farsi R, Alharbi M, Algothmi K, Alburae N, Ganash M, Azhari S, Basingab F, Almuhammadi A, Alqosaibi A, Alkhatabi H, Elaimi A, Jan M, Aldhalaan HM, Alrafiah A, Alrofaidi A. Multiple Recurrent Copy Number Variations (CNVs) in Chromosome 22 Including 22q11.2 Associated with Autism Spectrum Disorder. Pharmgenomics Pers Med 2022; 15:705-720. [PMID: 35898556 PMCID: PMC9309317 DOI: 10.2147/pgpm.s366826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a developmental disorder that can cause substantial social, communication, and behavioral challenges. Genetic factors play a significant role in ASD, where the risk of ASD has been increased for unclear reasons. Twin studies have shown important evidence of both genetic and environmental contributions in ASD, where the level of contribution of these factors has not been proven yet. It has been suggested that copy number variation (CNV) duplication and the deletion of many genes in chromosome 22 (Ch22) may have a strong association with ASD. This study screened the CNVs in Ch22 in autistic Saudi children and assessed the candidate gene in the CNVs region of Ch22 that is most associated with ASD. Methods This study included 15 autistic Saudi children as well as 4 healthy children as controls; DNA was extracted from samples and analyzed using array comparative genomic hybridization (aCGH) and DNA sequencing. Results The aCGH detected (in only 6 autistic samples) deletion and duplication in many regions of Ch22, including some critical genes. Moreover, DNA sequencing determined a genetic mutation in the TBX1 gene sequence in autistic samples. This study, carried out using aCGH, found that six autistic patients had CNVs in Ch22, and DNA sequencing revealed mutations in the TBX1 gene in autistic samples but none in the control. Conclusion CNV deletion and the duplication of the TBX1 gene could be related to ASD; therefore, this gene needs more analysis in terms of expression levels.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud Algothmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany Alqosaibi
- Department of Biology, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Heba Alkhatabi
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Jan
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hesham M Aldhalaan
- Center for Autism Research at King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Aziza Alrafiah
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Correspondence: Aziza Alrafiah, Department of Medical Laboratory Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia, Tel +966 126401000 Ext. 23495, Fax +966 126401000 Ext. 21686, Email
| | - Aisha Alrofaidi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Funato N. Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. J Dev Biol 2022; 10:jdb10020018. [PMID: 35645294 PMCID: PMC9149807 DOI: 10.3390/jdb10020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The 22q11.2 deletion is one of the most common genetic microdeletions, affecting approximately 1 in 4000 live births in humans. A 1.5 to 2.5 Mb hemizygous deletion of chromosome 22q11.2 causes DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). DGS/VCFS are associated with prevalent cardiac malformations, thymic and parathyroid hypoplasia, and craniofacial defects. Patients with DGS/VCFS manifest craniofacial anomalies involving the cranium, cranial base, jaws, pharyngeal muscles, ear-nose-throat, palate, teeth, and cervical spine. Most craniofacial phenotypes of DGS/VCFS are caused by proximal 1.5 Mb microdeletions, resulting in a hemizygosity of coding genes, microRNAs, and long noncoding RNAs. TBX1, located on chromosome 22q11.21, encodes a T-box transcription factor and is a candidate gene for DGS/VCFS. TBX1 regulates the fate of progenitor cells in the cranial and pharyngeal apparatus during embryogenesis. Tbx1-null mice exhibit the most clinical features of DGS/VCFS, including craniofacial phenotypes. Despite the frequency of DGS/VCFS, there has been a limited review of the craniofacial phenotypes of DGC/VCFS. This review focuses on these phenotypes and summarizes the current understanding of the genetic factors that impact DGS/VCFS-related phenotypes. We also review DGS/VCFS mouse models that have been designed to better understand the pathogenic processes of DGS/VCFS.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Advanced Therapeutic Sciences, Medical and Dental Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
6
|
The TBX1/miR-193a-3p/TGF- β2 Axis Mediates CHD by Promoting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5130546. [PMID: 35035663 PMCID: PMC8759832 DOI: 10.1155/2022/5130546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022]
Abstract
Congenital heart disease (CHD) is the most common noninfectious cause of death during the neonatal stage. T-box transcription factor 1 (TBX1) is the main genetic determinant of 22q11.2 deletion syndrome (22q11.2DS), which is a common cause of CHD. Moreover, ferroptosis is a newly discovered kind of programmed cell death. In this study, the interaction among TBX1, miR-193a-3p, and TGF-β2 was tested using quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and dual-luciferase reporter assays. TBX1 silencing was found to promote TGF-β2 messenger ribonucleic acid (mRNA) and protein expression by downregulating the miR-193a-3p levels in H9c2 cells. In addition, the TBX1/miR-193a-3p/TGF-β2 axis was found to promote ferroptosis based on assessments of lipid reactive oxygen species (ROS) levels, Fe2+ concentrations, mitochondrial ROS levels, and malondialdehyde (MDA) contents; Cell Counting Kit-8 (CCK-8) assays and transmission electron microscopy; and Western blotting analysis of glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), NADPH oxidase 4 (NOX4), and acyl-CoA synthase long-chain family member 4 (ACSL4) protein expression. The protein expression of NRF2, GPX4, HO-1, NOX4, and ACSL4 and the level of MDA in human CHD specimens were also detected. In addition, TBX1 and miR-193a-3p expression was significantly downregulated and TGF-β2 levels were high in human embryonic CHD tissues, as indicated by the H9c2 cell experiments. In summary, the TBX1/miR-193a-3p/TGF-β2 axis mediates CHD by inducing ferroptosis in cardiomyocytes. TGF-β2 may be a target gene for CHD diagnosis and treatment in children.
Collapse
|
7
|
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB, Liu X, Wu SH, Yang YQ. A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genet Mol Biol 2020; 43:e20200142. [PMID: 33306779 PMCID: PMC7783509 DOI: 10.1590/1678-4685-gmb-2020-0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
TBX5 has been linked to Holt-Oram syndrome, with congenital heart defect (CHD) and atrial fibrillation (AF) being two major cardiac phenotypes. However, the prevalence of a TBX5 variation in patients with CHD and AF remains obscure. In this research, by sequencing analysis of TBX5 in 178 index patients with both CHD and AF, a novel heterozygous variation, NM_000192.3: c.577G>T; p.(Gly193*), was identified in one index patient with CHD and AF as well as bicuspid aortic valve (BAV), with an allele frequency of approximately 0.28%. Genetic analysis of the proband's pedigree showed that the variation co-segregated with the diseases. The pathogenic variation was not detected in 292 unrelated healthy subjects. Functional analysis by using a dual-luciferase reporter assay system showed that the Gly193*-mutant TBX5 protein failed to transcriptionally activate its target genes MYH6 and NPPA. Moreover, the mutation nullified the synergistic transactivation between TBX5 and GATA4 as well as NKX2-5. Additionally, whole-exome sequencing analysis showed no other genes contributing to the diseases. This investigation firstly links a pathogenic variant in the TBX5 gene to familial CHD and AF as well as BAV, suggesting that CHD and AF as well as BAV share a common developmental basis in a subset of patients.
Collapse
Affiliation(s)
- Wei-Feng Jiang
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Ying-Jia Xu
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China
| | - Cui-Mei Zhao
- Tongji University School of Medicine, Department of Cardiology, Tongji Hospital, Shanghai, China
| | - Xin-Hua Wang
- Shanghai Jiao Tong University School of Medicine, Department of Cardiology, Renji Hospital, Shanghai, China
| | - Xing-Biao Qiu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Xu Liu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Shao-Hui Wu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Yi-Qing Yang
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Central Laboratory, Shanghai Fifth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Wang Z, Song HM, Wang F, Zhao CM, Huang RT, Xue S, Li RG, Qiu XB, Xu YJ, Liu XY, Yang YQ. A New ISL1 Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle. Int Heart J 2019; 60:1113-1122. [DOI: 10.1536/ihj.18-685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhi Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Hao-Ming Song
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Fei Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University
- Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University
- Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University
| |
Collapse
|
9
|
Amaya-Uribe L, Rojas M, Azizi G, Anaya JM, Gershwin ME. Primary immunodeficiency and autoimmunity: A comprehensive review. J Autoimmun 2019; 99:52-72. [PMID: 30795880 DOI: 10.1016/j.jaut.2019.01.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
The primary immunodeficiency diseases (PIDs) include many genetic disorders that affect different components of the innate and adaptive responses. The number of distinct genetic PIDs has increased exponentially with improved methods of detection and advanced laboratory methodology. Patients with PIDs have an increased susceptibility to infectious diseases and non-infectious complications including allergies, malignancies and autoimmune diseases (ADs), the latter being the first manifestation of PIDs in several cases. There are two types of PIDS. Monogenic immunodeficiencies due to mutations in genes involved in immunological tolerance that increase the predisposition to develop autoimmunity including polyautoimmunity, and polygenic immunodeficiencies characterized by a heterogeneous clinical presentation that can be explained by a complex pathophysiology and which may have a multifactorial etiology. The high prevalence of ADs in PIDs demonstrates the intricate relationships between the mechanisms of these two conditions. Defects in central and peripheral tolerance, including mutations in AIRE and T regulatory cells respectively, are thought to be crucial in the development of ADs in these patients. In fact, pathology that leads to PID often also impacts the Treg/Th17 balance that may ease the appearance of a proinflammatory environment, increasing the odds for the development of autoimmunity. Furthermore, the influence of chronic and recurrent infections through molecular mimicry, bystander activation and super antigens activation are supposed to be pivotal for the development of autoimmunity. These multiple mechanisms are associated with diverse clinical subphenotypes that hinders an accurate diagnosis in clinical settings, and in some cases, may delay the selection of suitable pharmacological therapies. Herein, a comprehensively appraisal of the common mechanisms among these conditions, together with clinical pearls for treatment and diagnosis is presented.
Collapse
Affiliation(s)
- Laura Amaya-Uribe
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Doctoral Program in Biomedical Sciences, Universidad Del Rosario, Bogota, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA.
| |
Collapse
|
10
|
Ma L, Wang J, Li L, Qiao Q, Di RM, Li XM, Xu YJ, Zhang M, Li RG, Qiu XB, Li X, Yang YQ. ISL1 loss-of-function mutation contributes to congenital heart defects. Heart Vessels 2018; 34:658-668. [PMID: 30390123 DOI: 10.1007/s00380-018-1289-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023]
Abstract
Congenital heart defect (CHD) is the most common form of birth deformity and is responsible for substantial morbidity and mortality in humans. Increasing evidence has convincingly demonstrated that genetic defects play a pivotal role in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disorder and the genetic basis underpinning CHD in the vast majority of cases remains elusive. This study was sought to identify the pathogenic mutation in the ISL1 gene contributing to CHD. A cohort of 210 unrelated patients with CHD and a total of 256 unrelated healthy individuals used as controls were registered. The coding exons and splicing boundaries of ISL1 were sequenced in all study subjects. The functional effect of an identified ISL1 mutation was evaluated using a dual-luciferase reporter assay system. A novel heterozygous ISL1 mutation, c.409G > T or p.E137X, was identified in an index patient with congenital patent ductus arteriosus and ventricular septal defect. Analysis of the proband's pedigree revealed that the mutation co-segregated with CHD, which was transmitted in the family in an autosomal dominant pattern with complete penetrance. The nonsense mutation was absent in 512 control chromosomes. Functional analysis unveiled that the mutant ISL1 protein failed to transactivate the promoter of MEF2C, alone or in synergy with TBX20. This study firstly implicates ISL1 loss-of-function mutation with CHD in humans, which provides novel insight into the molecular mechanism of CHD, implying potential implications for genetic counseling and individually tailored treatment of CHD patients.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.,Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Qiao
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ruo-Min Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Xiu-Mei Li
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xun Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Funato N, Yanagisawa H. Deletion of the T-box transcription factor gene, Tbx1, in mice induces differential expression of genes associated with cleft palate in humans. Arch Oral Biol 2018; 95:149-155. [PMID: 30121012 DOI: 10.1016/j.archoralbio.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We examined the function of the T-box transcription factor 1 (TBX1) in palatogenesis. DESIGN Tbx1-knockout mice were histologically examined by hematoxylin and eosin staining. Next, secondary palatal shelves dissected from wild type or Tbx1-knockout mice embryos at embryonic day 13.5 were investigated with microarray analysis, gene ontology analysis, and real-time quantitative polymerase chain reaction. We performed gene profiling of developing palatal shelves from wild type and Tbx1-knockout embryos. We also analyzed the association of mouse genes linked to cleft palate with biological processes and compared the results with those of our ontology analysis of dysregulated genes in Tbx1-knockout palatal shelves. RESULTS Histological analysis of Tbx1-knockout palate with complete cleft palate at postnatal day 1 showed aplasia of secondary palates associated with a small mandible and a small tongue compared to wild type littermates. Gene ontology analysis indicated that genes associated with development of the nervous system, muscle, and biomineral tissue were dysregulated in Tbx1-knockout palatal shelves. Furthermore, in Tbx1-knockout palatal shelves, genes associated with human cleft palate, specifically, myosin heavy chain 3 (Myh3) and nebulin (Neb), were downregulated and gamma-aminobutyric acid type A receptor beta 3 subunit (Gabrb3) was upregulated. CONCLUSIONS Our findings demonstrate that TBX1 maintains normal growth and development of palatal shelves, mediated through the regulation of genes involved in muscle cell differentiation, nervous system development, and biomineral tissue development. Multiple factors in Tbx1-knockout mice may lead to various subtypes of cleft palate.
Collapse
Affiliation(s)
- Noriko Funato
- Department of Signal Gene Regulation, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan; Research Core, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hiromi Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|