1
|
Jones BS, Ross CM, Foley G, Pozhydaieva N, Sharratt JW, Kress N, Seibt LS, Thomson RES, Gumulya Y, Hayes MA, Gillam EMJ, Flitsch SL. Engineering Biocatalysts for the C-H Activation of Fatty Acids by Ancestral Sequence Reconstruction. Angew Chem Int Ed Engl 2024; 63:e202314869. [PMID: 38163289 DOI: 10.1002/anie.202314869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Selective, one-step C-H activation of fatty acids from biomass is an attractive concept in sustainable chemistry. Biocatalysis has shown promise for generating high-value hydroxy acids, but to date enzyme discovery has relied on laborious screening and produced limited hits, which predominantly oxidise the subterminal positions of fatty acids. Herein we show that ancestral sequence reconstruction (ASR) is an effective tool to explore the sequence-activity landscape of a family of multidomain, self-sufficient P450 monooxygenases. We resurrected 11 catalytically active CYP116B ancestors, each with a unique regioselectivity fingerprint that varied from subterminal in the older ancestors to mid-chain in the lineage leading to the extant, P450-TT. In lineages leading to extant enzymes in thermophiles, thermostability increased from ancestral to extant forms, as expected if thermophily had arisen de novo. Our studies show that ASR can be applied to multidomain enzymes to develop active, self-sufficient monooxygenases as regioselective biocatalysts for fatty acid hydroxylation.
Collapse
Affiliation(s)
- Bethan S Jones
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Connie M Ross
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Nadiia Pozhydaieva
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Joseph W Sharratt
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Nico Kress
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Lisa S Seibt
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Sabine L Flitsch
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
2
|
Luo Y, Jiang Y, Chen L, Li C, Wang Y. Applications of protein engineering in the microbial synthesis of plant triterpenoids. Synth Syst Biotechnol 2022; 8:20-32. [PMID: 36381964 PMCID: PMC9634032 DOI: 10.1016/j.synbio.2022.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Triterpenoids are a class of natural products widely used in fields related to medicine and health due to their biological activities such as hepatoprotection, anti-inflammation, anti-viral, and anti-tumor. With the advancement in biotechnology, microorganisms have been used as cell factories to produce diverse natural products. Despite the significant progress that has been made in the construction of microbial cell factories for the heterogeneous biosynthesis of triterpenoids, the industrial production of triterpenoids employing microorganisms has been stymied due to the shortage of efficient enzymes as well as the low expression and low catalytic activity of heterologous proteins in microbes. Protein engineering has been demonstrated as an effective way for improving the specificity, catalytic activity, and stability of the enzyme, which can be employed to overcome these challenges. This review summarizes the current progress in the studies of Oxidosqualene cyclases (OSCs), cytochrome P450s (P450s), and UDP-glycosyltransferases (UGTs), the key enzymes in the triterpenoids synthetic pathway. The main obstacles restricting the efficient catalysis of these key enzymes are analyzed, the applications of protein engineering for the three key enzymes in the microbial synthesis of triterpenoids are systematically reviewed, and the challenges and prospects of protein engineering are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yaozhu Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Corresponding author.
| |
Collapse
|
3
|
Donoso RA, Ruiz D, Gárate-Castro C, Villegas P, González-Pastor JE, de Lorenzo V, González B, Pérez-Pantoja D. Identification of a self-sufficient cytochrome P450 monooxygenase from Cupriavidus pinatubonensis JMP134 involved in 2-hydroxyphenylacetic acid catabolism, via homogentisate pathway. Microb Biotechnol 2021; 14:1944-1960. [PMID: 34156761 PMCID: PMC8449657 DOI: 10.1111/1751-7915.13865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
The self-sufficient cytochrome P450 RhF and its homologues belonging to the CYP116B subfamily have attracted considerable attention due to the potential for biotechnological applications based in their ability to catalyse an array of challenging oxidative reactions without requiring additional protein partners. In this work, we showed for the first time that a CYP116B self-sufficient cytochrome P450 encoded by the ohpA gene harboured by Cupriavidus pinatubonensis JMP134, a β-proteobacterium model for biodegradative pathways, catalyses the conversion of 2-hydroxyphenylacetic acid (2-HPA) into homogentisate. Mutational analysis and HPLC metabolite detection in strain JMP134 showed that 2-HPA is degraded through the well-known homogentisate pathway requiring a 2-HPA 5-hydroxylase activity provided by OhpA, which was additionally supported by heterologous expression and enzyme assays. The ohpA gene belongs to an operon including also ohpT, coding for a substrate-binding subunit of a putative transporter, whose expression is driven by an inducible promoter responsive to 2-HPA in presence of a predicted OhpR transcriptional regulator. OhpA homologues can be found in several genera belonging to Actinobacteria and α-, β- and γ-proteobacteria lineages indicating a widespread distribution of 2-HPA catabolism via homogentisate route. These results provide first time evidence for the natural function of members of the CYP116B self-sufficient oxygenases and represent a significant input to support novel kinetic and structural studies to develop cytochrome P450-based biocatalytic processes.
Collapse
Affiliation(s)
- Raúl A Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniela Ruiz
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Carla Gárate-Castro
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Pamela Villegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - José Eduardo González-Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Bernardo González
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| |
Collapse
|
4
|
Faponle AS, Roy A, Adelegan AA, Gauld JW. Molecular Dynamics Simulations of a Cytochrome P450 from Tepidiphilus thermophilus (P450-TT) Reveal How Its Substrate-Binding Channel Opens. Molecules 2021; 26:molecules26123614. [PMID: 34204747 PMCID: PMC8231624 DOI: 10.3390/molecules26123614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450s (P450) are important enzymes in biology with useful biochemical reactions in, for instance, drug and xenobiotics metabolisms, biotechnology, and health. Recently, the crystal structure of a new member of the CYP116B family has been resolved. This enzyme is a cytochrome P450 (CYP116B46) from Tepidiphilus thermophilus (P450-TT) and has potential for the oxy-functionalization of organic molecules such as fatty acids, terpenes, steroids, and statins. However, it was thought that the opening to its hitherto identified substrate channel was too small to allow organic molecules to enter. To investigate this, we performed molecular dynamics simulations on the enzyme. The results suggest that the crystal structure is not relaxed, possibly due to crystal packing effects, and that its tunnel structure is constrained. In addition, the simulations revealed two key amino acid residues at the mouth of the channel; a glutamyl and an arginyl. The glutamyl’s side chain tightens and relaxes the opening to the channel in conjunction with the arginyl’s, though the latter’s side chain is less dramatically changed after the initial relaxation of its conformations. Additionally, it was observed that the effect of increased temperature did not considerably affect the dynamics of the enzyme fold, including the relative solvent accessibility of the amino acid residues that make up the substrate channel wall even as compared to the changes that occurred at room temperature. Interestingly, the substrate channel became distinguishable as a prominent tunnel that is likely to accommodate small- to medium-sized organic molecules for bioconversions. That is, P450-TT has the ability to pass appropriate organic substrates to its active site through its elaborate substrate channel, and notably, is able to control or gate any molecules at the opening to this channel.
Collapse
Affiliation(s)
- Abayomi S. Faponle
- Department of Biochemistry, Faculty of Basic Medical Sciences, Sagamu Campus, Olabisi Onabanjo University, Ago-Iwoye, Nigeria; (A.S.F.); (A.A.A.)
| | - Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada;
| | - Ayodeji A. Adelegan
- Department of Biochemistry, Faculty of Basic Medical Sciences, Sagamu Campus, Olabisi Onabanjo University, Ago-Iwoye, Nigeria; (A.S.F.); (A.A.A.)
| | - James W. Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada;
- Correspondence: ; Tel.: +1-519-253-3000 (ext. 3992); Fax: +1-519-973-7098
| |
Collapse
|
5
|
Correddu D, Di Nardo G, Gilardi G. Self-Sufficient Class VII Cytochromes P450: From Full-Length Structure to Synthetic Biology Applications. Trends Biotechnol 2021; 39:1184-1207. [PMID: 33610332 DOI: 10.1016/j.tibtech.2021.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
Members of class VII cytochromes P450 are catalytically self-sufficient enzymes containing a phthalate dioxygenase reductase-like domain fused to the P450 catalytic domain. Among these, CYP116B46 is the first enzyme for which the 3D structure of the whole polypeptide chain has been solved, shedding light on the interaction between its domains, which is crucial for catalysis. Most of these enzymes have been isolated from extremophiles or detoxifying bacteria that can carry out regio- and enantioselective oxidation of compounds of biotechnological interest. Protein engineering has generated mutants that can perform challenging organic reactions such as the anti-Markovnikov alkene oxidation. This potential, combined with the detailed 3D structure, forms the basis for further directed evolution studies aimed at widening their biotechnological exploitation.
Collapse
Affiliation(s)
- Danilo Correddu
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
6
|
|
7
|
Finnigan JD, Young C, Cook DJ, Charnock SJ, Black GW. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:289-320. [PMID: 32951814 DOI: 10.1016/bs.apcsb.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).
Collapse
Affiliation(s)
| | - Carl Young
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | - Darren J Cook
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | | | - Gary W Black
- Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Nat Commun 2020; 11:2676. [PMID: 32472090 PMCID: PMC7260179 DOI: 10.1038/s41467-020-16500-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/07/2020] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 monooxygenases are versatile heme-thiolate enzymes that catalyze a wide range of reactions. Self-sufficient cytochrome P450 enzymes contain the redox partners in a single polypeptide chain. Here, we present the crystal structure of full-length CYP116B46, a self-sufficient P450. The continuous polypeptide chain comprises three functional domains, which align well with the direction of electrons traveling from FMN to the heme through the [2Fe-2S] cluster. FMN and the [2Fe-2S] cluster are positioned closely, which facilitates efficient electron shuttling. The edge-to-edge straight-line distance between the [2Fe-2S] cluster and heme is approx. 25.3 Å. The role of several residues located between the [2Fe-2S] cluster and heme in the catalytic reaction is probed in mutagenesis experiments. These findings not only provide insights into the intramolecular electron transfer of self-sufficient P450s, but are also of interest for biotechnological applications of self-sufficient P450s. Self-sufficient cytochrome P450 monooxygenases, which contain all redox partners in a single polypeptide chain, are of interest for biotechnological applications. Here, the authors present the crystal structure of full-length Thermobispora bispora CYP116B46 and discuss the potential electron transfer pathway.
Collapse
|
9
|
Ciaramella A, Catucci G, Di Nardo G, Sadeghi SJ, Gilardi G. Peroxide-driven catalysis of the heme domain of A. radioresistens cytochrome P450 116B5 for sustainable aromatic rings oxidation and drug metabolites production. N Biotechnol 2020; 54:71-79. [DOI: 10.1016/j.nbt.2019.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
|
10
|
Crystal structure of bacterial CYP116B5 heme domain: New insights on class VII P450s structural flexibility and peroxygenase activity. Int J Biol Macromol 2019; 140:577-587. [PMID: 31430491 DOI: 10.1016/j.ijbiomac.2019.08.141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
Abstract
Class VII cytochromes P450 are self-sufficient enzymes carrying a phthalate family oxygenase-like reductase domain and a P450 domain fused in a single polypeptide chain. The biocatalytic applications of CYP116B members are limited by the need of the NADPH cofactor and the lack of crystal structures as a starting point for protein engineering. Nevertheless, we demonstrated that the heme domain of CYP116B5 can use hydrogen peroxide as electron donor bypassing the need of NADPH. Here, we report the crystal structure of CYP116B5 heme domain in complex with histidine at 2.6 Å of resolution. The structure reveals the typical P450 fold and a closed conformation with an active site cavity of 284 Å3 in volume, accommodating a histidine molecule forming a hydrogen bond with the water molecule present as 6th heme iron ligand. MD simulations in the absence of any ligand revealed the opening of a tunnel connecting the active site to the protein surface through the movement of F-, G- and H-helices. A structural alignment with bacterial cytochromes P450 allowed the identification of amino acids in the proximal heme site potentially involved in peroxygenase activity. The availability of the crystal structure provides the bases for the structure-guided design of new biocatalysts.
Collapse
|
11
|
Manning J, Tavanti M, Porter JL, Kress N, De Visser SP, Turner NJ, Flitsch SL. Regio‐ and Enantio‐selective Chemo‐enzymatic C−H‐Lactonization of Decanoic Acid to (S)‐δ‐Decalactone. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jack Manning
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Michele Tavanti
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Joanne L. Porter
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Nico Kress
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Sam P. De Visser
- School of Chemical Engineering and Analytical ScienceThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB)School of ChemistryThe University of Manchester 131 Princess Street M1 7DN Manchester UK
| |
Collapse
|
12
|
Manning J, Tavanti M, Porter JL, Kress N, De Visser SP, Turner NJ, Flitsch SL. Regio- and Enantio-selective Chemo-enzymatic C-H-Lactonization of Decanoic Acid to (S)-δ-Decalactone. Angew Chem Int Ed Engl 2019; 58:5668-5671. [PMID: 30861252 DOI: 10.1002/anie.201901242] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 12/18/2022]
Abstract
The conversion of saturated fatty acids to high value chiral hydroxy-acids and lactones poses a number of synthetic challenges: the activation of unreactive C-H bonds and the need for regio- and stereoselectivity. Here the first example of a wild-type cytochrome P450 monooxygenase (CYP116B46 from Tepidiphilus thermophilus) capable of enantio- and regioselective C5 hydroxylation of decanoic acid 1 to (S)-5-hydroxydecanoic acid 2 is reported. Subsequent lactonization yields (S)-δ-decalactone 3, a high value fragrance compound, with greater than 90 % ee. Docking studies provide a rationale for the high regio- and enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Jack Manning
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Michele Tavanti
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Joanne L Porter
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Nico Kress
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Sam P De Visser
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nicholas J Turner
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| |
Collapse
|