1
|
Pal JK, Sur S, Mittal SPK, Dey S, Mahale MP, Mukherjee A. Clinical implications of miRNAs in erythropoiesis, anemia, and other hematological disorders. Mol Biol Rep 2024; 51:1064. [PMID: 39422834 DOI: 10.1007/s11033-024-09981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Erythropoiesis is regulated by the differential expression of many genes. Besides being transcriptionally regulated, these genes are also with the oath of epigenetic regulation by the microRNAs (miRNAs), in particular. Various miRNAs appear to be very important for the normal process of erythropoiesis and various hematological abnormalities in humans. Therefore, the review aims to summarize the significance of miRNAs in erythropoiesis and different hematological diseases with clinical importance. Our analysis indicates that specific miRNAs regulate erythropoiesis in a stage-specific manner from hematopoietic stem cells to differentiated erythrocytes. Further, many miRNAs have been reported to be linked with various hematological diseases. The importance of miRNAs as biomarkers or therapeutic drug targets for various hematological disorders like anemia, β-thalassemia, and leukemia has been revealed through various clinical studies and clinical trials. The miR-34a mimic and miR-155 inhibitor demonstrate promising therapeutic effects in various hematological malignancies. Additionally, miR-34a, miR-538e, miR-193e, and miR-198 exhibit diagnostic potential in acute myeloid leukemia, while miR-451, miR-151-5p, and miR-1290 show diagnostic potential in B-cell acute lymphoblastic leukemia. Thus, this review encompasses the latest observations and implications of specific miRNAs in erythropoiesis and various hematological disorders. However, challenges persist in developing safe and efficient delivery strategies to target miRNAs specifically, minimizing off-target effects and enhancing therapeutic outcomes. Future mechanistic pre-clinical and clinical research would contribute to overcoming these challenges.
Collapse
Affiliation(s)
- Jayanta Kumar Pal
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| | - Subhayan Sur
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| | - Smriti P K Mittal
- Departmnt of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.
| | - Saurabh Dey
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | | | - Arijit Mukherjee
- Departmnt of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
2
|
Xu Q, Jia R, Yang F, Hu P, Li X, Ge S, Jiang S, Chan J, Zhai W, Chen L. Identification of two miRNAs regulating cardiomyocyte proliferation in an Antarctic icefish. iScience 2024; 27:110128. [PMID: 38939105 PMCID: PMC11209021 DOI: 10.1016/j.isci.2024.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The hemoglobinless Antarctic icefish develop large hearts to compensate for reduced oxygen-carrying capacity, which serves as a naturally occurred model to explore the factors regulating cardiogenesis. Through miRNAome and microRNAome comparisons between an icefish (Chionodraco hamatus) and two red-blooded notothenioids, we discovered significant upregulation of factors in the BMP signaling pathways and altered expression of many miRNAs, including downregulation of 14 miRNAs in the icefish heart. Through knocking down of these miRNAs, we identified two of them, miR-458-3p and miR-144-5p, involved in enlarged heart development. The two miRNAs were found to regulate cardiomyocyte proliferation by targeting bone morphogenetic protein-2 (bmp2). We further validated that activation of the miRNA-bmp2 signaling in the fish heart could be triggered by hypoxic exposure. Our study suggested that a few miRNAs play important roles in the hypoxia-induced cardiac remodeling of the icefish which shed new light on the mechanisms regulating cardiomyocyte proliferation in heart.
Collapse
Affiliation(s)
- Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
| | - Ruonan Jia
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Fei Yang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Peng Hu
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Xue Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Saiya Ge
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiulin Chan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Nassiri SM, Ahmadi Afshar N, Almasi P. Insight into microRNAs' involvement in hematopoiesis: current standing point of findings. Stem Cell Res Ther 2023; 14:282. [PMID: 37794439 PMCID: PMC10552299 DOI: 10.1186/s13287-023-03504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Hematopoiesis is a complex process in which hematopoietic stem cells are differentiated into all mature blood cells (red blood cells, white blood cells, and platelets). Different microRNAs (miRNAs) involve in several steps of this process. Indeed, miRNAs are small single-stranded non-coding RNA molecules, which control gene expression by translational inhibition and mRNA destabilization. Previous studies have revealed that increased or decreased expression of some of these miRNAs by targeting several proto-oncogenes could inhibit or stimulate the myeloid and erythroid lineage commitment, proliferation, and differentiation. During the last decades, the development of molecular and bioinformatics techniques has led to a comprehensive understanding of the role of various miRNAs in hematopoiesis. The critical roles of miRNAs in cell processes such as the cell cycle, apoptosis, and differentiation have been confirmed as well. However, the main contribution of some miRNAs is still unclear. Therefore, it seems undeniable that future studies are required to focus on miRNA activities during various hematopoietic stages and hematological malignancy.
Collapse
Affiliation(s)
- Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran.
| | - Neda Ahmadi Afshar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| | - Parsa Almasi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| |
Collapse
|
4
|
Li Y, Zhang H, Hu B, Wang P, Wang W, Liu J. Post-transcriptional regulation of erythropoiesis. BLOOD SCIENCE 2023; 5:150-159. [PMID: 37546708 PMCID: PMC10400058 DOI: 10.1097/bs9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 08/08/2023] Open
Abstract
Erythropoiesis is a complex, precise, and lifelong process that is essential for maintaining normal body functions. Its strict regulation is necessary to prevent a variety of blood diseases. Normal erythropoiesis is precisely regulated by an intricate network that involves transcription levels, signal transduction, and various epigenetic modifications. In recent years, research on post-transcriptional levels in erythropoiesis has expanded significantly. The dynamic regulation of splicing transitions is responsible for changes in protein isoform expression that add new functions beneficial for erythropoiesis. RNA-binding proteins adapt the translation of transcripts to the protein requirements of the cell, yielding mRNA with dynamic translation efficiency. Noncoding RNAs, such as microRNAs and lncRNAs, are indispensable for changing the translational efficiency and/or stability of targeted mRNAs to maintain the normal expression of genes related to erythropoiesis. N6-methyladenosine-dependent regulation of mRNA translation plays an important role in maintaining the expression programs of erythroid-related genes and promoting erythroid lineage determination. This review aims to describe our current understanding of the role of post-transcriptional regulation in erythropoiesis and erythroid-associated diseases, and to shed light on the physiological and pathological implications of the post-transcriptional regulation machinery in erythropoiesis. These may help to further enrich our understanding of the regulatory network of erythropoiesis and provide new strategies for the diagnosis and treatment of erythroid-related diseases.
Collapse
Affiliation(s)
- Yanan Li
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihang Zhang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Bin Hu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Pan Wang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wei Wang
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
5
|
Chen B, Li D, Ran B, Zhang P, Wang T. Key miRNAs and Genes in the High-Altitude Adaptation of Tibetan Chickens. Front Vet Sci 2022; 9:911685. [PMID: 35909692 PMCID: PMC9330022 DOI: 10.3389/fvets.2022.911685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Tibetan chickens living at high altitudes show specific physiological adaptations to the extreme environmental conditions. However, the regulated base of how chickens adapt to high-altitude habitats remains largely unknown. In this study, we sequenced 96 transcriptomes (including 48 miRNA and 48 mRNA transcriptomes of heart, liver, lung, and brain) and resequenced 12 whole genomes of Tibetan chickens and Peng'xian yellow chickens. We found that several miRNAs show the locally optimal plastic changes that occurred in miRNAs of chickens, such as miR-10c-5p, miR-144-3p, miR-3536, and miR-499-5p. These miRNAs could have effects on early adaption to the high-altitude environment of chickens. In addition, the genes under selection between Tibetan chickens and Peng'xian yellow chickens were mainly related to oxygen transport and oxidative stress. The I-kappa B kinase/NF-kappa B signaling pathway is widely found for high-altitude adaptation in Tibetan chickens. The candidate differentially expressed miRNAs and selected genes identified in this study may be useful in current breeding efforts to develop improved breeds for the highlands.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li
| | - Bo Ran
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Pu Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang
| |
Collapse
|
6
|
Li W, Guan X. PUF60 of Japanese flounder is regulated by pol-miR-novel_395 and involved in pathogen infection, autophagy, and apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104170. [PMID: 34144120 DOI: 10.1016/j.dci.2021.104170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved, non-coding small RNAs that have been shown to regulate diverse biological processes including immunity. In a previous study, a novel miRNA of Japanese flounder (Paralichthys olivaceus), pol-miR-novel_395, was found to be responsive in expression to the infection of the bacterial pathogen Edwardsiella tarda. In the present study, we examined the regulation and immune effect of pol-miR-novel_395 and its target gene. We found that pol-miR-novel_395 expression was regulated by E. tarda and megalocytivirus, and pol-miR-novel_395 targeted the gene of PUF60 (poly (U)-binding-splicing factor 60 kDa) of flounder (named PoPUF60). Constitutive expression of PoPUF60 occurred in relatively high levels in the heart and liver of flounder. Bacterial infection upregulated PoPUF60 expression, whereas viral infection downregulated PoPUF60 expression. Interference with PoPUF60 expression or overexpression of pol-miR-novel_395 in flounder cells strongly potentiated E. tarda infection. Consistently, in vivo knockdown of PoPUF60 enhanced bacterial dissemination in the tissues of flounder but blocked viral replication, whereas in vivo overexpression of PoPUF60 inhibited bacterial dissemination but facilitated viral replication. Additionally, pol-miR-novel_395 and PoPUF60 were involved in the process of autophagy and apoptosis. Collectively, these results indicated that PoPUF60 and pol-miR-novel_395 play an important role in pathogen infection, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Wenrui Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Using the Zebrafish as a Genetic Model to Study Erythropoiesis. Int J Mol Sci 2021; 22:ijms221910475. [PMID: 34638816 PMCID: PMC8508994 DOI: 10.3390/ijms221910475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
Vertebrates generate mature red blood cells (RBCs) via a highly regulated, multistep process called erythropoiesis. Erythropoiesis involves synthesis of heme and hemoglobin, clearance of the nuclei and other organelles, and remodeling of the plasma membrane, and these processes are exquisitely coordinated by specific regulatory factors including transcriptional factors and signaling molecules. Defects in erythropoiesis can lead to blood disorders such as congenital dyserythropoietic anemias, Diamond–Blackfan anemias, sideroblastic anemias, myelodysplastic syndrome, and porphyria. The molecular mechanisms of erythropoiesis are highly conserved between fish and mammals, and the zebrafish (Danio rerio) has provided a powerful genetic model for studying erythropoiesis. Studies in zebrafish have yielded important insights into RBC development and established a number of models for human blood diseases. Here, we focus on latest discoveries of the molecular processes and mechanisms regulating zebrafish erythropoiesis and summarize newly established zebrafish models of human anemias.
Collapse
|
8
|
Tian Y, Sun Y, Ou M, Cui X, Zhou D, Che W. Cloning and expression analysis of GATA1 gene in Carassius auratus red var. BMC Genom Data 2021; 22:12. [PMID: 33736593 PMCID: PMC7977614 DOI: 10.1186/s12863-021-00966-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GATA1 is a key transcription factor in the GATA family, and promotes the differentiation and maturation of red blood cell, which is essential for normal hematopoiesis. RESULTS Our results showed that the cDNA sequence of GATA1 was 2730 bp long encoding 443 amino acids. qRT-PCR analysis demonstrated that GATA1 had the highest expression in testis (T), followed by pituitary (P) and spleen (S). GATA1 gene expression in C. auratus red var. embryo from the neuroblast stage (N) to the embryo hatching (H) changes continuously; and the gene expression levels of nonylphenol (NP)-treated and those of control embryos were significantly different. Moreover, Methylation levels of GATA1 gene in NP-treated embryos were higher than those in control embryos, indicating that NP affected GATA1 methylation. CONCLUSIONS Our study provides cues for further studying the roles of GATA1 gene in fish development, and suggested a potential molecular mechanism by which NP leads to abnormal development of fish embryos.
Collapse
Affiliation(s)
- Yusu Tian
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| | - Yuandong Sun
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China.
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, Hunan, People's Republic of China
| | - Xiaojuan Cui
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| | - Dinggang Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| | - Wen'an Che
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| |
Collapse
|
9
|
Tu Y, Wu W, Guo Y, Lu F, Xu D, Li X, Zhao Y, He L. Upregulation of hsa-miR-31-3p induced by ultraviolet affects keratinocytes permeability barrier by targeting CLDN1. Biochem Biophys Res Commun 2020; 532:626-632. [PMID: 32907715 DOI: 10.1016/j.bbrc.2020.06.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Chronic actinic dermatitis (CAD) is a photoallergic skin disease with complicated pathogenesis. However, skin barrier dysfunction may be involved according to clinical manifestation. To investigate the mechanism of CAD barrier dysfunction, noninvasive detection of skin barrier and small RNA sequencing were carried out. Quantitative real-time PCR (qRT-PCR) was used to evaluate the expression levels of hsa-miR-31-3p and CLDN1. The correlation between hsa-miR-31-3p and CAD severity was explored. Further, dual-luciferase reporter assay was performed to identify the relationship between hsa-miR-31-3p and CLDN1. In addition, expression of hsa-miR-31-3p was detected after ultraviolet (UV) irradiation. Influences of hsa-miR-31-3p on primary human keratinocytes barrier were assessed by FITC-Dextran permeability assay. Moreover, western blot was used to detect the expression of claudin-1, filaggrin, loricrin and involucrin. Our results showed that transepidermal water loss (TEWL) significantly increased in CAD, while stratum corneum hydration (SCH) significantly decreased. The expression of hsa-miR-31-3p was up-regulated in CAD while CLDN1 was down-regulated. Hsa-miR-31-3p was correlated with TEWL, UV-MED (minimal erythema dose) and clinical severity scores of CAD (CSS-CAD). Dual-luciferase reporter assay confirmed that hsa-miR-31-3p targeted the 3'UTR region of CLDN1. Moreover, hsa-miR-31-3p was induced by UVB (0-30 mJ/cm2) and UVA (0-4 J/cm2). Furthermore, overexpression of hsa-miR-31-3p increased FITC-Dextran flux of primary human keratinocytes and reduced the expression of claudin-1, filaggrin, loricrin and involucrin. In conclusion, we demonstrated that hsa-miR-31-3p induced by UV was correlated with CAD severity, which played an important role in regulating keratinocytes permeability barrier through targeting CLDN1.
Collapse
Affiliation(s)
- Yunhua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Department of Dermatology, The Second People's Hospital of Guiyang, Guizhou, 550000, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Fujian, 675000, China
| | - Fengyan Lu
- Department of Dermatology, The First People's Hospital of Qujing, Qujing, 655000, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xing Li
- Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, 675000, China
| | - Yueting Zhao
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
10
|
Yu X, Li R, He L, Ding X, Liang Y, Peng W, Shi H, Lin H, Zhang Y, Lu D. MicroRNA-29b modulates the innate immune response by suppressing IFNγs production in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2020; 104:537-544. [PMID: 32470508 DOI: 10.1016/j.fsi.2020.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Interferon-γ (IFNγ), a type II interferon, is essential to host resistance against various infections. Unlike other vertebrates, fish have two types of IFNγs, IFNγ1 (also named IFNγ-rel) and IFNγ2. MicroRNAs (miRNAs) regulate multiple biological processes by suppressing mRNA translation or inducing mRNA degradation. Among them, miR-29 can directly target IFNγ and affact innate and adaptive immune responses in mice. There are five members of the miR-29 family in orange-spotted grouper (Epinephelus coioides), which share the same miRNA seed region. However, whether miR-29 directly targets E. coioides IFNγs and regulate IFNγ production is still unknown. In the present study, the negative correlation between miR-29b and both IFNγs in immune tissues of healthy E. coioides and grouper spleen cells (GS cells) stimulated with LPS or poly I:C was demonstrated. Moreover, dual-luciferase reporter assays and western blotting were performed to demonstrate that miR-29b suppressed E. coioides IFNγ production. Studies of NO production in GS cells after miR-29b transfection revealed that miR-29b overexpression affected NO production through the downregulation of IFNγ expression. Taken together, our results suggest that miR-29b may directly target E. coioides IFNγs and modulate IFNγ-mediated innate immune responses by suppressing E. coioides IFNγs production.
Collapse
Affiliation(s)
- Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Ruozhu Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Xu Ding
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Yaosi Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Wan Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Herong Shi
- Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China.
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China.
| |
Collapse
|
11
|
Clinical Value of Serum LHPP-associated miR-765 in the Prognosis of Laparoscopic or Open Hepatectomy for Hepatocellular Carcinoma. Surg Laparosc Endosc Percutan Tech 2020; 30:395-402. [PMID: 32404854 PMCID: PMC7664965 DOI: 10.1097/sle.0000000000000808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The current study aims to investigate the effect of tumor suppressor LHPP-associated microRNA (miR)-765 on the prognosis of laparoscopic hepatectomy (LH) or open hepatectomy (OH) for hepatocellular carcinoma (HCC).
Collapse
|
12
|
MiR-19b-3p facilitates the proliferation and epithelial-mesenchymal transition, and inhibits the apoptosis of intrahepatic cholangiocarcinoma by suppressing coiled-coil domain containing 6. Arch Biochem Biophys 2020; 686:108367. [PMID: 32315652 DOI: 10.1016/j.abb.2020.108367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatocellular carcinoma, and microRNAs (miRNAs) play a vital role in its development. This study aimed to explore the molecular mechanism and clinical value of miR-19b-3p in ICC. METHODS From March 2014 to October 2016, 94 pairs of specimens of ICC tissues and adjacent tissues were collected. Moreover, 5 ml of peripheral blood of 342 ICC patients who underwent ICC resection were collected before and one week after surgery. Luciferase activity assay was performed to confirm the regulation of miR-19b-3p on coiled-coil domain containing 6 (CCDC6). BALB/c nude mice were injected with CCLP-1 cells which were transfected with NC, miR-19b-3p mimic, miR-19b-3p inhibitor, pcDNA-CCDC6, si-CCDC6 or miR-19b-3p mimic + pcDNA-CCDC6. RESULTS Results showed that miR-19b-3p levels were significantly higher in ICC tissues compared with adjacent tissues. Moreover, serum miR-19b-3p levels of ICC patients tended to decline after surgery, and were correlated with lymph node metastasis and histological grading of ICC. CCDC6, a new target gene of miR-19b-3p, was identified by four prediction databases. We confirmed that miR-19b-3p promoted cell proliferation and epithelial-mesenchymal transition (EMT), and inhibited apoptosis in ICC, while knockdown of CCDC6 reversed these effects. We also observed that miR-19b-3p/CCDC6 axis regulated the nuclear translocation of β-catenin. Furthermore, in vivo study also demonstrated that the miR-19b-3p/CCDC6 axis regulated EMT to promote ICC progression. CONCLUSION These results indicate that serum miR-19b-3p level is a crucial biomarker for ICC diagnosis and targeting miR-19b-3p-CCDC6 axis might be a promising strategy in ICC therapy.
Collapse
|
13
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Ma Y, Zang L, Wang D, Jiang J, Wang C, Wang X, Fang F, Wang H. Effects of miR-181a-5p abnormal expression on zebrafish (Danio rerio) vascular development following triclosan exposure. CHEMOSPHERE 2019; 223:523-535. [PMID: 30784759 DOI: 10.1016/j.chemosphere.2019.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS), one of the important bactericides, is widely used in personal care products, and its chronic exposure leads to severe toxic effects on the growth and development of blood vessels in zebrafish (Danio rerio). Herein, we screened out three differentially expressed miRNAs (miR-181a-5p, miR-132-3p and miR-128-3p) by sequencing and qRT-PCR analyses of 4-96-hpf TCS-exposed zebrafish, among which miR-181a-5p was found to regulate many signaling pathways involved in fatty acid biosynthesis and phosphatidylimositol signaling systems. By O-dianisidine staining, TCS-exposure resulted in decreased distribution of red blood cells and induced blood hypercoagulable state and thrombotic effects. Defective subintestinal veins (SIVs), and decreased branching and curvature of blood vessels were observed with increasing TCS-exposure concentrations. After microinjection of miR-181a-5p mimic and inhibitor, zebrafish malformation type and percentage were prominently increased such as distorted SIV vessels along with reduced venation and abnormal branches by ALP staining. Overexpressed miR-181a-5p had a greater effect on development and branching patterns of arteries and veins than its knockdown. By laser confocal microscopy observation, the 72-hpf Tg (flk1: mCherry) zebrafish obviously displayed vascular proliferation and ablation in the miR-181a-5p mimic group. Microinjection of miR-181a-5p mimics and inhibitors led to abnormal expressions (20-50%) of two key target genes (pax2a and vash2) by WISH, and increased malformation percentages (18-45%) by IOD analysis. Overexpression of vash2 led to the inhibitory or promoting effects on the expression of PI3K signaling pathway-related genes, proving that the effect of vash2 on development of blood vessels could be realized by inhibiting PI3K signaling pathway. These observations lay theoretical foundation for deep insight into the molecular mechanisms on TCS-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Yan Ma
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Luxiu Zang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Danting Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiahui Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Fang Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
15
|
Wang M, Jiang S, Wu W, Yu F, Chang W, Li P, Wang K. Non-coding RNAs Function as Immune Regulators in Teleost Fish. Front Immunol 2018; 9:2801. [PMID: 30546368 PMCID: PMC6279911 DOI: 10.3389/fimmu.2018.02801] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins. ncRNAs function as key regulators of gene expression and chromatin modification. Recently, the functional role of ncRNAs in teleost fish has been extensively studied. Teleost fish are a highly diverse group among the vertebrate lineage. Fish are also important in terms of aquatic ecosystem, food production and human life, being the source of animal proteins worldwide and models of biomedical research. However, teleost fish always suffer from the invasion of infectious pathogens including viruses and bacteria, which has resulted in a tremendous economic loss to the fishing industry worldwide. Emerging evidence suggests that ncRNAs, especially miRNAs and lncRNAs, may serve as important regulators in cytokine and chemokine signaling, antigen presentation, complement and coagulation cascades, and T cell response in teleost fish. In this review, we summarize current knowledge and understanding of the roles of both miRNAs and lncRNAs in immune regulation in teleost fish. Molecular mechanism insights into the function of ncRNAs in fish immune response may contribute to the development of potential biomarkers and therapeutic targets for the prevention and treatment of fish diseases.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|