1
|
Xie Y, Peng Y, Fu G, Jin J, Wang S, Li M, Zheng Q, Lyu FJ, Deng Z, Ma Y. Nano wear particles and the periprosthetic microenvironment in aseptic loosening induced osteolysis following joint arthroplasty. Front Cell Infect Microbiol 2023; 13:1275086. [PMID: 37854857 PMCID: PMC10579613 DOI: 10.3389/fcimb.2023.1275086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
Joint arthroplasty is an option for end-stage septic arthritis due to joint infection after effective control of infection. However, complications such as osteolysis and aseptic loosening can arise afterwards due to wear and tear caused by high joint activity after surgery, necessitating joint revision. Some studies on tissue pathology after prosthesis implantation have identified various cell populations involved in the process. However, these studies have often overlooked the complexity of the altered periprosthetic microenvironment, especially the role of nano wear particles in the etiology of osteolysis and aseptic loosening. To address this gap, we propose the concept of the "prosthetic microenvironment". In this perspective, we first summarize the histological changes in the periprosthetic tissue from prosthetic implantation to aseptic loosening, then analyze the cellular components in the periprosthetic microenvironment post prosthetic implantation. We further elucidate the interactions among cells within periprosthetic tissues, and display the impact of wear particles on the disturbed periprosthetic microenvironments. Moreover, we explore the origins of disease states arising from imbalances in the homeostasis of the periprosthetic microenvironment. The aim of this review is to summarize the role of relevant factors in the microenvironment of the periprosthetic tissues, in an attempt to contribute to the development of innovative treatments to manage this common complication of joint replacement surgery.
Collapse
Affiliation(s)
- Yu Xie
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yujie Peng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Guangtao Fu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuai Wang
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Mengyuan Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Chisari E, Magnuson JA, Ong CB, Parvizi J, Krueger CA. Ceramic-on-polyethylene hip arthroplasty reduces the risk of postoperative periprosthetic joint infection. J Orthop Res 2022; 40:2133-2138. [PMID: 34812555 DOI: 10.1002/jor.25230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
Metal-on-polyethylene (MoP) total hip arthroplasty (THA) prostheses are known to release metal debris. Basic science studies suggest that metal implants induce a pro-inflammatory response that ultimately chemoattracts leukocytes including macrophages and neutrophils to the surgical site. This raises concern of higher risk of infection with these prostheses through the "trojan horse" mechanism by which neutrophils and macrophages transport intracellular pathogens from a remote site. This study compared the infection occurrence between MoP and ceramic-on-polyethylene (CoP) implants to determine if a higher infection rate in MoP is present. We reviewed a consecutive series of 6052 CoP and 4550 MoP primary THA patients from 2015 to 2019. The occurrence of periprosthetic joint infection at 2 years was defined according to the 2018 ICM definition. Statistical analysis consisted of descriptive statistics, univariate analysis, and regression modeling. When compared to CoP, MoP patients were older, included more females, had a higher body mass index, and more commonly affected by comorbidities according to Elixhauser's score. Total revisions were higher in the MoP group (3.19% vs. 2.41%) The absolute incidence of PJI was higher in MoP (2.40% vs. 1.64%). When we adjusted for confounding factors, MoP was found independently associated with a higher PJI risk. Despite MoP and CoP both being widely used for primary THA, we found a higher incidence of PJI in MoP patients. The association remained significant when controlled for possible confounders. We hypothesize that leukocyte recruitment to these implants may play a role and should be further investigated.
Collapse
Affiliation(s)
- Emanuele Chisari
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Justin A Magnuson
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christian B Ong
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Javad Parvizi
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chad A Krueger
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
The Expression Levels of Toll-like Receptors after Metallic Particle and Ion Exposition in the Synovium of a Murine Model. J Clin Med 2021; 10:jcm10163489. [PMID: 34441785 PMCID: PMC8396889 DOI: 10.3390/jcm10163489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
To date, the exact role of specific Toll-like receptors (TLRs) in regulating immune reactivity to metallic byproducts of orthopedic implants has not been fully clarified. In light of the situation, our objective in this investigation was to assess the expression levels of surface TLRs after metallic particle and ion exposure in an established animal model. Ten female BALB/c mice in each group received intra-articular injections of phosphate buffer (PBS) (control), metallic particles (MP), and metallic ions (MI), respectively. Seven days later, immunohistochemical staining was undertaken in the synovial layer of the murine knee joints using anti-TLR 1, 2, 4, 5, and 6 polyclonal antibodies. In addition to increased cellular infiltrates and a hyperplastic synovial membrane, the MP group showed significantly elevated TLR expression compared to the control group and had higher TLR 1-, 4-, and 6-positive cells than the MI group (p < 0.0167). TLR 4- and TLR 6-positive cells were significantly augmented for the MI group compared to the control group (p < 0.0167). Additionally, greenish corrosion particles found in the necrotic tissue suggested that metallic particles might release a certain level of locally toxic metallic ions in vivo.
Collapse
|
4
|
Hu X, Xu L, Fu X, Huang J, Ji P, Zhang Z, Deng F, Wu X. The TiO 2-μ implant residual is more toxic than the Al 2O 3-n implant residual via blocking LAP and inducing macrophage polarization. NANOSCALE 2021; 13:8976-8990. [PMID: 33973606 DOI: 10.1039/d1nr00696g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Medical device residuals cause harmful effects and diseases in the human body, such as Particle Disease (PD), but the biological interaction of different types of particles is unclear. In this study, after a biological interaction screen between different particles, we aimed to explore the mechanism of the biological interaction between different types of particles, and the effect of a proteasome inhibitor on PD. Our studies showed that the titanium oxide microscale particle (Ti-μ) was more toxic than the aluminum oxide nanoscale particle (Al-n). Al-n activated LAP, attenuated the macrophage M1 polarization, inhibited the activator of the NF-κB pathway, and blocked the secretion of inflammatory factors and apoptosis in vitro, and also prevented the inflammation tissue disorder and aseptic loosening in vivo induced by Ti-μ. What is more, Bortezomib blocked apoptosis, secretion of inflammatory factors and the activation of the NF-κB pathway induced by TiO2 micro particles. Al-n-induced autophagy could play the function in the efficient clearance of dying cells by phagocytosis, and serves in dampening M1 polarization-related pro-inflammatory responses. While the Ti alloy medical implant and devices are applied worldwide, the toxicity of Ti-μ and its interaction with Al-n could be considered in the implant design, and Bortezomib was a potential therapeutic for PD.
Collapse
Affiliation(s)
- Xiaolei Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China and Key Laboratory of Clinical Laboratory Science, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, China
| | - Ling Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, China
| | - Xuewei Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, China
| | - Jiao Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Periodontology, College of Stomatology, Chongqing Medical University, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Zhiwei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Periodontology, College of Stomatology, Chongqing Medical University, China
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xiaomian Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, China. and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, China and Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Effect of Interleukin 1 Receptor Antagonist Gene on Stable Expression Bone Marrow Mesenchymal Stem Cells and Early Aseptic Loosening of Hip Prosthesis of Mouse. Mol Biotechnol 2021; 63:232-239. [PMID: 33464542 DOI: 10.1007/s12033-020-00297-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
The research aimed to investigate the diagnostic value of Interleukin 1 receptor antagonist (IL-1Ra) in the early aseptic loosening of hip prosthesis and whether IL-1Ra can be expressed in bone marrow mesenchymal stem cells. In this study, the IL-1Ra gene was firstly connected to the lentiviral vector LV5, and the lentiviral vector LV5-home-IL1Ra was obtained by recombination. Then the recombinant LV5-home-IL1Ra was co-transfected with the virus-assisted plasmid into 293 T cells and packaged to produce lentivirus. Bone marrow-derived stem cells (BMSCs) were infected with packaged lentiviruses. The relative expression of IL-1Ra mRNA in BMSCs was detected by fluorescence quantitative PCR. The expression of IL-1Ra protein in BMSCs was detected by western blot transfer electrophoresis. Peripheral venous blood samples from 108 patients and healthy subjects underwent total hip replacement were collected to detect the levels of plasma biomarkers procollagen type I carboxy-terminal propeptide (PICP), N-telopeptide cross-links of type I collagen (NTX), osteoprotegerin (OPG), TNGα, receptor activator of NF-kappaB ligand (RANKL), and IL-1β. The recombinant lentivirus vector IL-1Ra was successfully constructed by 2% agarose gel electrophoresis. Lentivirus-mediated IL-1Ra gene could efficiently transfection bone marrow mesenchymal stem cells, and the cell growth density reached about 80% at 72 h after infection. The transfection rate was about 90%, and the fluorescence was enhanced. The relative mRNA and protein expression levels of IL-1Ra in the BMSCs-IL-1Ra group were significantly higher than those in the BMSCs group and the BMSCs-con group (P < 0.01). The late loosening group of IL-1β was significantly higher than the stable prosthesis group and the healthy group (P < 0.05). The ROC curve showed that IL-1 background had strong diagnostic sensitivity and specificity, which was similar to the X-ray score of osteolysis and had the most significant diagnostic significance. Lentivirus-transfected exogenous IL-1Ra can be expressed stably in mouse bone marrow mesenchymal stem cells, and IL-1β, an antagonist of IL-1Ra, plays an important role in the early aseptic loosening of hip prosthesis.
Collapse
|
6
|
The Recombinant Protein EphB4-Fc Changes the Ti Particle-Mediated Imbalance of OPG/RANKL via EphrinB2/EphB4 Signaling Pathway and Inhibits the Release of Proinflammatory Factors In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1404915. [PMID: 32587656 PMCID: PMC7294355 DOI: 10.1155/2020/1404915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Aseptic loosening caused by wear particles is one of the common complications after total hip arthroplasty. We investigated the effect of the recombinant protein ephB4-Fc (erythropoietin-producing human hepatocellular receptor 4) on wear particle-mediated inflammatory response. In vitro, ephrinB2 expression was analyzed using siRNA-NFATc1 (nuclear factor of activated T-cells 1) and siRNA-c-Fos. Additionally, we used Tartrate-resistant acid phosphatase (TRAP) staining, bone pit resorption, Enzyme-linked immunosorbent assay (ELISA), as well as ephrinB2 overexpression and knockdown experiments to verify the effect of ephB4-Fc on osteoclast differentiation and function. In vivo, a mouse skull model was constructed to test whether the ephB4-Fc inhibits osteolysis and inhibits inflammation by micro-CT, H&E staining, immunohistochemistry, and immunofluorescence. The gene expression of ephrinB2 was regulated by c-Fos/NFATc1. Titanium wear particles activated this signaling pathway to the promoted expression of the ephrinB2 gene. However, ephrinB2 protein can be activated by osteoblast membrane receptor ephB4 to inhibit osteoclast differentiation. In in vivo experiments, we found that ephB4 could regulate Ti particle-mediated imbalance of OPG/RANKL, and the most important finding was that ephB4 relieved the release of proinflammatory factors. The ephB4-Fc inhibits wear particle-mediated osteolysis and inflammatory response through the ephrinB2/EphB4 bidirectional signaling pathway, and ephrinB2 ligand is expected to become a new clinical drug therapeutic target.
Collapse
|
7
|
Zhang L, Haddouti EM, Welle K, Burger C, Wirtz DC, Schildberg FA, Kabir K. The Effects of Biomaterial Implant Wear Debris on Osteoblasts. Front Cell Dev Biol 2020; 8:352. [PMID: 32582688 PMCID: PMC7283386 DOI: 10.3389/fcell.2020.00352] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Aseptic loosening subsequent to periprosthetic osteolysis is the leading cause for the revision of arthroplasty failure. The biological response of macrophages to wear debris has been well established, however, the equilibrium of bone remodeling is not only dictated by osteoclastic bone resorption but also by osteoblast-mediated bone formation. Increasing evidence shows that wear debris significantly impair osteoblastic physiology and subsequent bone formation. In the present review, we update the current state of knowledge regarding the effect of biomaterial implant wear debris on osteoblasts. The interaction of osteoblasts with osteoclasts and macrophages under wear debris challenge, and potential treatment options targeting osteoblasts are also presented.
Collapse
Affiliation(s)
- Li Zhang
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - El-Mustapha Haddouti
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kristian Welle
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Koroush Kabir
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Jin L, Chen C, Jia G, Li Y, Zhang J, Huang H, Kang B, Yuan G, Zeng H, Chen T. The bioeffects of degradable products derived from a biodegradable Mg-based alloy in macrophages via heterophagy. Acta Biomater 2020; 106:428-438. [PMID: 32044459 DOI: 10.1016/j.actbio.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 01/09/2023]
Abstract
Biodegradable magnesium alloys are promising candidates for use in biomedical applications. However, degradable particles (DPs) derived from Mg-based alloys have been observed in tissue in proximity to sites of implantation, which might result in unexpected effects. Although previous in vitro studies have found that macrophages can take up DPs, little is known about the potential phagocytic pathway and the mechanism that processes DPs in cells. Additionally, it is necessary to estimate the potential bioeffects of DPs on macrophages. Thus, in this study, DPs were generated from a Mg-2.1Nd-0.2Zn-0.5Zr alloy (JDBM) by an electrochemical method, and then macrophages were incubated with the DPs to reveal the potential impact. The results showed that the cell viability of macrophages decreased in a concentration-dependent manner in the presence of DPs due to effects of an apoptotic pathway. However, the DPs were phagocytosed into the cytoplasm of macrophages and further degraded in phagolysosomes, which comprised lysosomes and phagosomes, by heterophagy instead of autophagy. Furthermore, several pro-inflammatory cytokines in macrophages were upregulated by DPs through the induction of reactive oxygen species (ROS) production. To the best of our knowledge, this is the first study to show that DPs derived from a Mg-based alloy are consistently degraded in phagolysosomes after phagocytosis by macrophages via heterophagy, which results in an inflammatory response owing to ROS overproduction. Thus, our research has increased the knowledge of the metabolism of biodegradable Mg metal, which will contribute to an understanding of the health effects of biodegradable magnesium metal implants used for tissue repair. STATEMENT OF SIGNIFICANCE: Biomedical degradable Mg-based alloys have great promise in applied medicine. Although previous studies have found that macrophages can uptake degradable particles (DPs) in vitro and observed in the sites of implantation in vivoin vivo, few studies have been carried out on the potential bioeffects relationship between DPs and macrophages. In this study, we analyzed the bioeffects of DPs derived from a Mg-based alloy on the macrophages. We illustrated that the DPs were size-dependently engulfed by macrophages via heterophagy and further degraded in the phagolysosome rather than autophagosome. Furthermore, DPs were able to induce a slight inflammatory response in macrophages by inducing ROS production. Thus, our research enhances the knowledge of the interaction between DPs of Mg-based alloy and cells, and offers a new perspective regarding the use of biodegradable alloys.
Collapse
|
9
|
Goodman SB, Gallo J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J Clin Med 2019; 8:E2091. [PMID: 31805704 PMCID: PMC6947309 DOI: 10.3390/jcm8122091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
Collapse
Affiliation(s)
- Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway St. M/C 6342, Redwood City, CA 94063, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic;
| |
Collapse
|