1
|
Hayashi K, Takagane K, Itoh G, Kuriyama S, Koyota S, Meguro K, Ling Y, Abé T, Ohashi R, Yashiro M, Mizuno M, Tanaka M. Cell-cell contact-dependent secretion of large-extracellular vesicles from EFNB high cancer cells accelerates peritoneal dissemination. Br J Cancer 2024; 131:982-995. [PMID: 39003372 PMCID: PMC11405516 DOI: 10.1038/s41416-024-02783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Large non-apoptotic vesicles released from the plasma membrane protrusions are classified as large-EVs (LEVs). However, the triggers of LEV secretion and their functions in tumors remain unknown. METHODS Coculture system of cancer cells, peritoneal mesothelial cells (PMCs), and macrophages (MΦs) was conducted to observe cell-cell contact-mediated LEV secretion. Lineage tracing of PMCs was performed using Wt1CreERT2-tdTnu mice to explore the effects of LEVs on PMCs in vivo, and lymphangiogenesis was assessed by qRT-PCR and flow-cytometry. RESULTS In peritoneal dissemination, cancer cells expressing Ephrin-B (EFNB) secreted LEVs upon the contact with PMCs expressing ephrin type-B (EphB) receptors, which degraded mesothelial barrier by augmenting mesothelial-mesenchymal transition. LEVs were incorporated in subpleural MΦs, and these MΦs transdifferentiated into lymphatic endothelial cells (LEC) and integrated into the lymphatic vessels. LEC differentiation was also induced in PMCs by interacting with LEV-treated MΦs, which promoted lymphangiogenesis. Mechanistically, activation of RhoA-ROCK pathway through EFNB reverse signaling induced LEV secretion. EFNBs on LEVs activated EphB forward signaling in PMC and MΦs, activating Akt, ERK and TGF-β1 pathway, which were indispensable for causing MMT and LEC differentiation. LEVs accelerated peritoneal dissemination and lymphatic invasions by cancer cells. Blocking of EFNBs on LEVs using EphB-Fc-fusion protein attenuated these events. CONCLUSIONS EFNBhigh cancer cells scattered LEVs when they attached to PMCs, which augmented the local reactions of PMC and MΦ (MMT and lymphangiogenesis) and exaggerated peritoneal dissemination.
Collapse
Affiliation(s)
- Kaito Hayashi
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Souichi Koyota
- Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kenji Meguro
- Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yiwei Ling
- Medical AI Center, Niigata University School of Medicine, Niigata University Life Innovation Hub, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Tatsuya Abé
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Riuko Ohashi
- Divisions of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8545, Japan
| | - Masaru Mizuno
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
2
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Wang L, Li W, Pan Y. The Eph/Ephrin system in primary bone tumor and bone cancer pain. Aging (Albany NY) 2023; 15:7324-7332. [PMID: 37413995 PMCID: PMC10415561 DOI: 10.18632/aging.204852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
The family of Eph receptor tyrosine kinases and their Ephrin ligands system constitutes a bidirectional signaling pathway. Eph/Ephrin system coordinate a wide spectrum of pathologic processes during development, metastasis, prognosis, drug resistance and angiogenesis in carcinogenesis. Chemotherapy, surgery and radiotherapy are the most commonly used clinical treatments for primary bone tumors. Therefore, surgical resection is often unable to completely eliminate the tumor, and this is the main cause of metastasis and postoperative recurrence. A growing body of literature has been published lately revitalizing our scientific interest towards the role of Eph/Ephrins in pathogenesis and the treatment of bone tumor and bone cancer pain. This study mainly reviewed the roles of Eph/Ephrin system that has both tumor-suppressing and -promoting roles in primary bone tumors and bone cancer pain. Understanding the intracellular mechanisms of Eph/Ephrin system in tumorigenesis and metastasis of bone tumors might provide a foundation for the development of Eph/Ephrin targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wei Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Yong Pan
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
4
|
Barua D, Winklbauer R. Eph/ephrin signaling controls cell contacts and formation of a structurally asymmetrical tissue boundary in the Xenopus gastrula. Dev Biol 2022; 490:73-85. [PMID: 35868403 DOI: 10.1016/j.ydbio.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
In the primitive vertebrate gastrula, the boundary between ectoderm and mesoderm is formed by Brachet's cleft. Here we examine Brachet's cleft and its control by Eph/ephrin signaling in Xenopus at the ultrastructural level and by visualizing cortical F-actin. We infer cortical tension ratios at tissue surfaces and their interface in normal gastrulae and after depletion of receptors EphB4 and EphA4 and ligands ephrinB2 and ephrinB3. We find that cortical tension downregulation at cell contacts, a normal process in adhesion, is asymmetrically blocked in the ectoderm by Eph/ephrin signals from the mesoderm. This generates high interfacial tension that can prevent cell mixing across the boundary. Moreover, it determines an asymmetric boundary structure that is suited for the respective roles of ectoderm and mesoderm, as substratum and as migratory layers. The Eph and ephrin isoforms also control different cell-cell contact types in ectoderm and mesoderm. Respective changes of adhesion upon isoform depletion affect adhesion at the boundary to different degrees but usually do not prohibit cleft formation. In an extreme case, a new type of cleft-like boundary is even generated where cortical tension is symmetrically increased on both sides of the boundary.
Collapse
Affiliation(s)
- Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|