1
|
Wang J, Zhang M, Huang X, Yue H. Multiproperty Polyethylenimine-Caged Platinum Nanoclusters Promote Apoptosis of Osteosarcoma Cells via Regulating the BAX-Bcl-2/Caspase-3/PARP Axis. Mol Pharm 2023; 20:5607-5615. [PMID: 37831437 DOI: 10.1021/acs.molpharmaceut.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Osteosarcoma, a prevalent primary bone cancer in children, exhibits a poor prognosis due to the high prevalence of drug resistance. The objective of this study was to investigate the potential of fluorescent ultrafine polyethylenimine-coated caged platinum nanoclusters (PEI-Pt NCs) as an antitumor agent in osteosarcoma. The primary focus of this study involved the utilization of osteosarcoma cells (U2-OS and MG-63) and normal control cells (hBMSC) as the primary subjects of investigation. The capacity of PEI-Pt NCs to enter osteosarcoma cells was observed through the implementation of confocal microscopy. The impact of PEI-Pt NCs on migration and proliferation was assessed through the utilization of various methodologies, including the CCK8 assay, Ki-67 immunofluorescence, clone formation assay, transwell assay, and wound healing assay. Furthermore, the influence of PEI-Pt NCs on apoptosis and its underlying mechanism was explored through the implementation of flow cytometry and Western blotting techniques. The PEI-Pt NCs demonstrated the capability to enter osteosarcoma cells, including the nucleus, while also exhibiting fluorescent labeling properties. Furthermore, the PEI-Pt NCs effectively impeded the migration and proliferation of osteosarcoma cells. Additionally, the PEI-Pt NCs facilitated apoptosis by modulating the BAX-Bcl-2/Caspase 3/PARP axis. The novel nanomaterial PEI-Pt NCs possess diverse advantageous capabilities, including the ability to impede cell proliferation and migration, as well as the capacity to modulate the BAX-Bcl-2/Caspase 3/PARP axis, thereby promoting cell apoptosis. Consequently, this nanomaterial exhibits promising potential in addressing the issue of inadequate platinum-based treatment for osteosarcoma.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhengzhou 450007, China
| | - Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou 450003, China
| |
Collapse
|
2
|
Zhang M, Yue H, Huang X, Wang J, Li Z, Deng X. Novel Platinum Nanoclusters Activate PI3K/AKT/mTOR Signaling Pathway-Mediated Autophagy for Cisplatin-Resistant Ovarian Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48502-48514. [PMID: 36261925 DOI: 10.1021/acsami.2c15143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Platinum (Pt)-based chemotherapy drugs such as cisplatin are the first line and core options for the treatment of ovarian cancer (OC), while cisplatin resistance has a worse prognosis and low 5 year survival rate for patients. Chemotherapeutic drugs synthesized from nanomaterials have shown great potential in biomedicine; however, research into their application for OC resistance is rarely discussed. This study is proposed to elucidate the anti-tumor effects of polyethylenimine (PEI)-caged platinum nanoclusters (Pt NCs) on cisplatin-resistant OC. The results of confocal microscopy showed that Pt NCs entered cisplatin-resistant OC cells dose-dependently and aggregated both in the cytoplasm and inside the nucleus. Subsequently, according to the results of CCK8 assay, wound healing assay, clone formation assay, Transwell assay, Ki-67 immunofluorescence assay, and flow cytometry assay, the proliferation and migration of cisplatin-resistant OC cells were inhibited by Pt NCs, as well as their apoptosis was promoted. In addition, we validated the anti-tumor effect of Pt NCs on regulating autophagy via monodansylcadaverine (MDC) staining, transmission electron microscopy observation of the autophagic ultrastructure, LC3-II-GFP and P62-GFP adenovirus single-label immunofluorescence, and western blotting; meanwhile, the role of Pt NCs in adjusting autophagy through modulation of the PI3K-AKT-mTOR signaling was verified. Based on these results, it appears that cisplatin-resistant OC cells can undergo apoptosis when Pt NCs activate autophagy by inhibiting the PI3K/AKT/mTOR pathway, exhibiting a promising potential of Pt NCs in the development of a novel chemotherapeutic agent for patients suffering from cisplatin-resistant OC.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou 450003, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhengzhou 450007, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing 100053, China
| | - Zengbei Li
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhengzhou 450007, China
| | - Xinjie Deng
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhengzhou 450007, China
| |
Collapse
|
3
|
Zhang M, Yue H, Liu Y, Li H, Yin Y, Sun Z, Cui P, Li F, Chen X, Huang X. Biomarking and Induction of Apoptosis in Ovarian Cancer Using Bifunctional Polyethyleneimine-Caged Platinum Nanoclusters. Front Oncol 2022; 12:898917. [PMID: 35719961 PMCID: PMC9204061 DOI: 10.3389/fonc.2022.898917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
According to the 2020 GLOBOCAN Global Cancer Women's Cancer Data, ovarian cancer is the eighth most common tumor in humans. Still, its mortality rate ranks first among all gynecological tumors, with a 5-year survival rate of 30% to 50%. Widespread clinical use of platinum-based drugs has improved survival outcomes in patients with ovarian cancer, but organ toxicity and drug resistance hinder their anticancer effects. In particular, the resistance to platinum drugs is an important reason for ovarian cancer's high recurrence rate and mortality. With the development of chemotherapeutic drugs synthesized by nanomaterials in the biomedical field, we developed bifunctional ultrafine polyethyleneimine caged platinum nanoclusters (PEI-Pt NCs) to improve the dilemma of platinum drugs. This study aimed to elucidate the antitumor effect of PEI-Pt NCs in OC. First, as observed by confocal microscopy, Pt NCs entered OC cells in a dose-dependent manner and accumulated on the surface of the nuclear membrane and in the nucleus. Subsequently, through cck8, ki-67 immunofluorescence, wound healing assay, transwell assay, clone formation assay, flow cytometry, tunel staining, and western blotting assay, it was confirmed that PEI-Pt NCs could inhibit the proliferation and migration and induce the apoptosis of ovarian cancer cells. PEI-Pt NCs can be used as fluorescent markers for systemic bioimaging of ovarian cancer, showing great potential in diagnosing and treating ovarian cancer, and making a specific contribution to solving the dilemma of platinum-based drug therapy for OC.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuan Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Yin
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhenxing Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Cui
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiuwei Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Xiao Z, Huang X, Wu J, Liu T, Zhao L, Wang Q, Wang M, Shen M, Miao S, Guo D, Li H. The endocytosis of nano-Pt into non-small cell lung cancer H1299 cells and intravital therapeutic effect in vivo. Biochem Biophys Res Commun 2022; 606:80-86. [PMID: 35339756 DOI: 10.1016/j.bbrc.2022.03.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer remains the most common fatal malignant disease, and the 5-year survival rate of patients with metastasis is merely 6%. In this research, the platinum nanocluster (short for nano-Pt) was used for optical imaging without the help of other fluorescent probes and possess targeted antitumor activity as well as low systemic toxicity. The endocytic pathway and distribution of nano-Pt in non-small cell lung cancer NSCLC H1299 cells was explored by the means of quantitative and qualitative tests. Furthermore, the targeting capability and antitumor efficiency of nano-Pt was detected by intravital imaging experiment and antitumor experiment. The research implies that nano-Pt entered H1299 cells dominatingly through macropinocytosis and clathrin-dependent endocytosis pathway, and has significant antitumor efficiency, targeting properties and reliable safety for mouse tumor, indicating this nano-Pt has great potential for clinical diagnosis and therapy of NSCLC H1299 cells.
Collapse
Affiliation(s)
- Zhongqing Xiao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Jie Wu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ting Liu
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710002, China
| | - Lingyun Zhao
- Department of Endocrinology of People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450008, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Minyu Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Meng Shen
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaoyi Miao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Di Guo
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Zhao L, Li H, Huang X, Liu T, Xin Y, Xiao Z, Zhao W, Miao S, Chen J, Li Z, Mi Y. The endocytic pathway of Pt nanoclusters and their induced apoptosis of A549 and A549/Cis cells through c-Myc/p53 and Bcl-2/caspase-3 signaling pathways. Biomed Pharmacother 2021; 144:112360. [PMID: 34794242 DOI: 10.1016/j.biopha.2021.112360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, multifunctional platinum nanoclusters (Pt-NCs) as new Pt-based anti-cancer drugs exhibit a promising therapeutic efficiency for several cancer diseases, especially for human pulmonary carcinoma. However, the endocytosis behaviors (like uptake pathway, etc.) and induced apoptosis mechanism of Pt-NCs for drug-resistant non-small cell lung cancer (NSCLC), are still inconclusive. In this research, we explored the endocytic pathway of Pt-NCs in both typical NSCLC A549 cells and cisplatin-resistant A549/Cis cells through qualitative confocal laser scanning microscope (CLSM) measurement and quantitative flow cytometry (FCM) and inductive coupled plasma-optical emission spectroscopy (ICP-OES) analysis, by the means of introducing the specific inhibitors which impede the classical ways of endocytosis. It was found that Pt-NCs dominatingly entered A549 cells via caveolin-mediated endocytosis as well as A549/Cis cells through micropinocytosis approach. Pt-NCs possessed an excellent inhibitory effect on the cell proliferation, migration and invasion, which the cell activity of A549 cells reduced to 14% and that of A549/Cis cells went down about four fifths. Moreover, Pt-NCs treatment increased caspase-3 protein levels and downregulated the expression of c-Myc and Bcl-2, proving the Pt-NCs-induced apoptosis of NSCLC cells was related to c-Myc/p53 and Bcl-2/caspase-3 signal pathways. These results demonstrate the explicit uptake pathway and apoptotic signaling pathway of Pt-NCs for NSCLC, which provides an in-depth and reasonable theoretical basis for the development of new Pt-NCs-based chemotherapeutics in future clinical practice.
Collapse
Affiliation(s)
- Lingyun Zhao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Hongyun Li
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China.
| | - Xin Huang
- School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhongyuan District, Zhengzhou 450007, China.
| | - Ting Liu
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Yi Xin
- Intensive Care Unit, Zhengzhou Orthopedics Hospital, No. 56 Longhai Road, Erqi District, Zhengzhou 450052, China
| | - Zhongqing Xiao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Wenfei Zhao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Shaoyi Miao
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Jing Chen
- Department of Respiratory and Criti cal Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| | - Zengbei Li
- School of Textiles, Zhongyuan University of Technology, No. 41 Zhongyuan Road (M), Zhongyuan District, Zhengzhou 450007, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, No. 3 Kangfuqian Street, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
6
|
Liu T, Huang X, Zhao L, Xiao Z, Li Z, Xin Y, Yang S, Guo D, Zhao W, Mi Y, Li H. Distinguishable Targeting of Non-Small Cell Lung Cancer Using Hyaluronan Functionalized Platinum Nanoclusters and Their Inhibition Behaviors of Proliferation, Invasion, Migration. ChemistryOpen 2021; 10:882-888. [PMID: 34363352 PMCID: PMC8409085 DOI: 10.1002/open.202100070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide and most cancer patients receiving conventional chemotherapy suffer from severe side effects due to the non-selective effects of chemotherapeutic drugs on normal cells. Targeted nanomaterials can obtain excellent accumulation at the tumor site through their active or passive targeting mechanisms, thereby reducing the toxicity of the drugs in various ways. In this study, hyaluronic acid (HA) which could specifically bind to CD44 on the surface of tumor cells, was used to modify amine-caged platinum nanoclusters (Pt NCs-NH2 ) to obtain targeting HA-Pt NCs-NH2 . Based on the differential expression of CD44 on the surface of three lung cells (non-small cell lung cancer cell H1299, small cell lung cancer cell H446, and embryonic lung fibroblast HFL1), HA-Pt NCs-NH2 can differentially enter the three cells and achieve their targeting of non-small cell lung cancer cell (NSCLC) cells. Pt NCs significantly inhibited the proliferation, migration and invasion of NSCLC cells and induced their apoptosis in comparison of classical cisplatin and carboplatin, showing a bright future in early diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Respiratory and Critical Care MedicineThe Fifth Affiliation Hospital of Zhengzhou UniversityNo. 3 Kangfuqian StreetZhengzhou450052China
| | - Xin Huang
- School of TextilesZhongyuan University of TechnologyNo. 41 Zhongyuan Road (M)Zhengzhou450007China
| | - Lingyun Zhao
- Department of Respiratory and Critical Care MedicineThe Fifth Affiliation Hospital of Zhengzhou UniversityNo. 3 Kangfuqian StreetZhengzhou450052China
| | - Zhongqing Xiao
- Department of Respiratory and Critical Care MedicineThe Fifth Affiliation Hospital of Zhengzhou UniversityNo. 3 Kangfuqian StreetZhengzhou450052China
| | - Zengbei Li
- School of TextilesZhongyuan University of TechnologyNo. 41 Zhongyuan Road (M)Zhengzhou450007China
| | - Yi Xin
- Intensive Care UnitZhengzhou Orthopedics HospitalNo. 56 Longhai RoadZhengzhou450052China
| | - Shanshan Yang
- Department of Respiratory and Critical Care MedicineThe Fifth Affiliation Hospital of Zhengzhou UniversityNo. 3 Kangfuqian StreetZhengzhou450052China
| | - Di Guo
- Department of Respiratory and Critical Care MedicineThe Fifth Affiliation Hospital of Zhengzhou UniversityNo. 3 Kangfuqian StreetZhengzhou450052China
| | - Wenfei Zhao
- Department of Respiratory and Critical Care MedicineThe Fifth Affiliation Hospital of Zhengzhou UniversityNo. 3 Kangfuqian StreetZhengzhou450052China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI CancerMarshall Medical Research CentreThe Fifth Affiliated Hospital of Zhengzhou UniversityNo. 3 Kangfuqian StreetZhengzhou450052China
| | - Hongyun Li
- Department of Respiratory and Critical Care MedicineThe Fifth Affiliation Hospital of Zhengzhou UniversityNo. 3 Kangfuqian StreetZhengzhou450052China
| |
Collapse
|
7
|
Versatile Pt NCs-based chemotherapeutic agents significantly induce the apoptosis of cisplatin-resistant non-small cell lung cancer. Biochem Biophys Res Commun 2019; 512:218-223. [PMID: 30885437 DOI: 10.1016/j.bbrc.2019.03.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022]
Abstract
Recently, the incidence of lung cancer is generally rising along with air pollution and smoking, and non-small cell lung cancer (NSCLC) accounts for nearly 85% among all lung cancer diagnoses. With the development of chemotherapy, the drug resistance rate of common platinum-based chemotherapeutic drugs (like cisplatin) is gradually increased, which seriously affects the chemotherapy efficiency and survival rate of patients. In this study, polyethylenimine caged platinum nanoclusters (PEI-caged Pt NCs) were proposed as a new chemotherapeutic agent to apply in the treatment of NSCLC, choosing the classical cisplatin-resistant A549/DDP cells and normal A549 cells as targets. It was found that our Pt NCs-based chemotherapeutic drugs showed its preferable therapeutic effect in cisplatin-resistant NSCLC through the results of confocal microscopic images, cell counting kit-8 test, cell apoptosis assay and western blot. Most importantly, in the cisplatin-resistance A549/DDP cells, this kind of agents could enter the nucleus obviously, and emerged a superior inhibitory and apoptotic effects than A549 via activating p53 protein and the related signaling pathways. Comparing with the traditional chemotherapy drugs, these Pt NCs-based chemotherapeutic agents exhibit great potential and advantages in the treatment and diagnosis of NSCLC regardless of the therapeutic effect or toxic side effects, especially the drug resistance.
Collapse
|