1
|
Leitch AC, Abdelghany TM, Charlton A, Grigalyte J, Oakley F, Borthwick LA, Reed L, Knox A, Reilly WJ, Agius L, Blain PG, Wright MC. Renal injury and hepatic effects from the methylimidazolium ionic liquid M8OI in mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110902. [PMID: 32634706 PMCID: PMC7447983 DOI: 10.1016/j.ecoenv.2020.110902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 05/25/2023]
Abstract
The ionic liquid 1-octyl-3-methylimidazolium (M8OI) has been found in the environment and identified as a hazard for triggering the liver disease primary biliary cholangitis (PBC). Given limited toxicity data for M8OI and other structurally-related ionic liquids, target organs for M8OI toxicity were examined. Adult male C57Bl6 mice were acutely exposed to 0-10 mg/kg body weight M8OI via 2 intraperitoneal injections (time zero and 18 h) and effects examined at 24 h. At termination, tissue histopathology, serum and urinary endpoints were examined. No overt pathological changes were observed in the heart and brain. In contrast, focal and mild to multifocal and moderate degeneration with a general trend for an increase in severity with increased dose was observed in the kidney. These changes were accompanied by a dose-dependent increased expression of Kim1 in kidney tissue, marked elevations in urinary Kim1 protein and a dose-dependent increase in serum creatinine. Hepatic changes were limited to a significant dose-dependent loss of hepatic glycogen and a mild but significant increase in portal tract inflammatory recruitment and/or fibroblastic proliferation accompanied by a focal fibrotic change. Cultured mouse tissue slices reflected these in vivo effects in that dose-dependent injury was observed in kidney slices but not in the liver. Kidney slices accumulated higher levels of M8OI than liver slices (e.g. at 10 μM, greater than 4 fold) and liver slices where markedly more active in the metabolism of M8OI. These data indicate that the kidney is a target organ for the toxic effects of M8OI accompanied by mild cholangiopathic changes in the liver after intraperitoneal administration.
Collapse
Affiliation(s)
- Alistair C Leitch
- Health Protection Research Unit, Wolfson Building, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Institute Translational and Clinical Research, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Tarek M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Alex Charlton
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 8QB, United Kingdom
| | - Justina Grigalyte
- Institute Translational and Clinical Research, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Lee Reed
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - William J Reilly
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Loranne Agius
- Health Protection Research Unit, Wolfson Building, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Peter G Blain
- Health Protection Research Unit, Wolfson Building, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Matthew C Wright
- Health Protection Research Unit, Wolfson Building, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Institute Translational and Clinical Research, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|