1
|
Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
The components and hospitable properties of tumor microenvironment (TME) are associated with tumor progression. Recently, TME modulating vectors and strategies have garnished significant attention in cancer therapy. Although a pilot work has reviewed TME regulation via nanoparticle-based delivery systems, there is no systematical review that summarizes the natural bacteria-based anti-tumor system to modulate TME. In this review, we conclude the strategies of bacterial carriers (including whole bacteria, bacterial skeleton and bacterial components) to regulate TME from the perspective of TME components and hospitable properties, and the clinical trials of bacteria-mediated cancer therapy. Current challenges and future prospects for the design of bacteria-based carriers are also proposed that provide critical insights into this natural delivery system and related translation from the bench to the clinic.
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Hu D, Zhao Y, Wang H, Min H, Cui Y, Luo K, Zhang L, Liu W, Zhang Y. Multiple draft tubes airlift loop membrane bioreactor as an efficient system for acidic 7-amino cephalosporanic acid (7-ACA) wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 304:123014. [PMID: 32088628 DOI: 10.1016/j.biortech.2020.123014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
In this study, a lab-scale multiple draft tubes airlift loop membrane bioreactor (Mt-ALMBR) was used for treating acidic 7-amino cephalosporanic acid (7-ACA) wastewater under different pHs (3.54-6.20) and hydraulic retention time (HRT) (48 h, 36 h, 24 h and 16 h). During about 200 days operation, under HRT of 48 h and pH condition about 6.0, the optimum average COD and BOD5 removal rates were reach to 84.4 ± 2.1% and 94.9 ± 0.8%, and the highest 7-ACA removal rate also observed as 77.6%. Biodegradation, membrane rejection, hydrolysis and sludge adsorption were the four main pathways of 7-ACA removal. With the increase of pH, biodegradation, membrane rejection and hydrolysis had significant positive impacts on 7-ACA removal, while adsorption had a negative impact. Moreover, mathematical models for 7-ACA removal rate and pH were calculated to guide the operation of Mt-ALMBR. Biodegradation was the main pathway to remove 7-ACA when pH was >4.17.
Collapse
Affiliation(s)
- Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Yuanyi Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Hongchao Min
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Kongyan Luo
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Lufeng Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wenyu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, PR China
| |
Collapse
|
3
|
Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother 2020; 125:110009. [PMID: 32106381 DOI: 10.1016/j.biopha.2020.110009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Until recently, patients who have the same type and stage of cancer all receive the same treatment. It has been established, however, that individuals with the same disease respond differently to the same therapy. Further, each tumor undergoes genetic changes that cause cancer to grow and metastasize. The changes that occur in one person's cancer may not occur in others with the same cancer type. These differences also lead to different responses to treatment. Precision medicine, also known as personalized medicine, is a strategy that allows the selection of a treatment based on the patient's genetic makeup. In the case of cancer, the treatment is tailored to take into account the genetic changes that may occur in an individual's tumor. Precision medicine, therefore, could be defined in terms of the targets involved in targeted therapy. METHODS A literature search in electronic data bases using keywords "cancer targeted therapy, personalized medicine and cancer combination therapies" was conducted to include papers from 2010 to June 2019. RESULTS Recent developments in strategies of targeted cancer therapy were reported. Specifically, on the two types of targeted therapy; first, immune-based therapy such as the use of immune checkpoint inhibitors (ICIs), immune cytokines, tumor-targeted superantigens (TTS) and ligand targeted therapeutics (LTTs). The second strategy deals with enzyme/small molecules-based therapies, such as the use of a proteolysis targeting chimera (PROTAC), antibody-drug conjugates (ADC) and antibody-directed enzyme prodrug therapy (ADEPT). The precise targeting of the drug to the gene or protein under attack was also investigated, in other words, how precision medicine can be used to tailor treatments. CONCLUSION The conventional therapeutic paradigm for cancer and other diseases has focused on a single type of intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy as well as combination therapies.
Collapse
Affiliation(s)
- Sara S Bashraheel
- Protein Engineering Unit, Life and Science Research Department, Anti-Doping Lab-Qatar (ADLQ), Doha, Qatar; Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Alexander Domling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Sayed K Goda
- Cairo University, Faculty of Science, Chemistry Department, Giza, Egypt.
| |
Collapse
|