1
|
Muñoz-Ayala A, Chimal-Vega B, Serafín-Higuera N, Galindo-Hernández O, Ramírez-Rosales G, Córdova-Guerrero I, Gómez-Lucas L, García-González V. Tamoxifen metabolites treatment promotes ERα+ transition to triple negative phenotype in vitro, effects of LDL in chemoresistance. Biosci Rep 2024; 44:BSR20240444. [PMID: 39034849 PMCID: PMC11301570 DOI: 10.1042/bsr20240444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVE Estrogen receptor-positive (ER+) breast cancer represents about 80% of cases, tamoxifen is the election neoadjuvant chemotherapy. However, a large percentage of patients develop chemoresistance, compromising recovery. Clinical evidence suggests that high plasmatic levels of low-density lipoproteins (LDL) could promote cancer progression. The present study analyzed the effect of LDL on the primary plasmatic active Tamoxifen's metabolites resistance acquisition, 4-hydroxytamoxifen (4OH-Tam) and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen), in breast cancer ERα + cells (MCF-7). METHODS Two resistant cellular variants, MCF-7Var-H and MCF-7Var-I, were generated by a novel strategy and their phenotype features were evaluated. Phenotypic assessment was performed by MTT assays, cytometry, immunofluorescence microscopy, zymography and protein expression analysis. RESULTS MCF-7Var-H, generated only with tamoxifen metabolites, showed a critical down-regulation in hormone receptors, augmented migration capacity, metalloprotease 9 extracellular medium excretion, and a mesenchymal morphology in contrast with native MCF-7, suggesting the transition towards Triple-negative breast cancer (TNBC) phenotype. In contrast, MCF-7Var-I which was generated in a high LDL media, showed only a slight upregulation in ER and other less noticeable metabolic adaptations. Results suggest a potential role of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in phenotypic differences observed among variants. CONCLUSION LDL high or low concentrations during Tamoxifen´s metabolites chemoresistance acquisition leads to different cellular mechanisms related to chemoresistance. A novel adaptative cellular response associated with Nrf2 activity could be implicated.
Collapse
Affiliation(s)
- Andrea Muñoz-Ayala
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, México
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, México
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, México
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, México
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, México
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, México
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, México
| | - Gladys Ramírez-Rosales
- Departamento de Inmunología, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, México
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22390, México
| | - Luis Fernando Gómez-Lucas
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, México
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, México
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, México
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, México
| |
Collapse
|
2
|
Tijms BM, Vromen EM, Mjaavatten O, Holstege H, Reus LM, van der Lee S, Wesenhagen KEJ, Lorenzini L, Vermunt L, Venkatraghavan V, Tesi N, Tomassen J, den Braber A, Goossens J, Vanmechelen E, Barkhof F, Pijnenburg YAL, van der Flier WM, Teunissen CE, Berven FS, Visser PJ. Cerebrospinal fluid proteomics in patients with Alzheimer's disease reveals five molecular subtypes with distinct genetic risk profiles. NATURE AGING 2024; 4:33-47. [PMID: 38195725 PMCID: PMC10798889 DOI: 10.1038/s43587-023-00550-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Alzheimer's disease (AD) is heterogenous at the molecular level. Understanding this heterogeneity is critical for AD drug development. Here we define AD molecular subtypes using mass spectrometry proteomics in cerebrospinal fluid, based on 1,058 proteins, with different levels in individuals with AD (n = 419) compared to controls (n = 187). These AD subtypes had alterations in protein levels that were associated with distinct molecular processes: subtype 1 was characterized by proteins related to neuronal hyperplasticity; subtype 2 by innate immune activation; subtype 3 by RNA dysregulation; subtype 4 by choroid plexus dysfunction; and subtype 5 by blood-brain barrier impairment. Each subtype was related to specific AD genetic risk variants, for example, subtype 1 was enriched with TREM2 R47H. Subtypes also differed in clinical outcomes, survival times and anatomical patterns of brain atrophy. These results indicate molecular heterogeneity in AD and highlight the need for personalized medicine.
Collapse
Affiliation(s)
- Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands.
| | - Ellen M Vromen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Olav Mjaavatten
- Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sven van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Kirsten E J Wesenhagen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroimaging, Amsterdam, the Netherlands
| | - Lisa Vermunt
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Vikram Venkatraghavan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Niccoló Tesi
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Epidemiology & Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Frode S Berven
- Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
González-Ortiz A, Pulido-Capiz A, Castañeda-Sánchez CY, Ibarra-López E, Galindo-Hernández O, Calderón-Fernández MA, López-Cossio LY, Díaz-Molina R, Chimal-Vega B, Serafín-Higuera N, Córdova-Guerrero I, García-González V. eIF4A/PDCD4 Pathway, a Factor for Doxorubicin Chemoresistance in a Triple-Negative Breast Cancer Cell Model. Cells 2022; 11:4069. [PMID: 36552834 PMCID: PMC9776898 DOI: 10.3390/cells11244069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cells employ several adaptive mechanisms under conditions of accelerated cell division, such as the unfolded protein response (UPR). The UPR is composed of a tripartite signaling system that involves ATF6, PERK, and IRE1, which maintain protein homeostasis (proteostasis). However, deregulation of protein translation initiation could be associated with breast cancer (BC) chemoresistance. Specifically, eukaryotic initiation factor-4A (eIF4A) is involved in the unfolding of the secondary structures of several mRNAs at the 5' untranslated region (5'-UTR), as well as in the regulation of targets involved in chemoresistance. Importantly, the tumor suppressor gene PDCD4 could modulate this process. This regulation might be disrupted in chemoresistant triple negative-BC (TNBC) cells. Therefore, we characterized the effect of doxorubicin (Dox), a commonly used anthracycline medication, on human breast carcinoma MDA-MB-231 cells. Here, we generated and characterized models of Dox chemoresistance, and chemoresistant cells exhibited lower Dox internalization levels followed by alteration of the IRE1 and PERK arms of the UPR and triggering of the antioxidant Nrf2 axis. Critically, chemoresistant cells exhibited PDCD4 downregulation, which coincided with a reduction in eIF4A interaction, suggesting a sophisticated regulation of protein translation. Likewise, Dox-induced chemoresistance was associated with alterations in cellular migration and invasion, which are key cancer hallmarks, coupled with changes in focal adhesion kinase (FAK) activation and secretion of matrix metalloproteinase-9 (MMP-9). Moreover, eIF4A knockdown via siRNA and its overexpression in chemoresistant cells suggested that eIF4A regulates FAK. Pro-atherogenic low-density lipoproteins (LDL) promoted cellular invasion in parental and chemoresistant cells in an MMP-9-dependent manner. Moreover, Dox only inhibited parental cell invasion. Significantly, chemoresistance was modulated by cryptotanshinone (Cry), a natural terpene purified from the roots of Salvia brandegeei. Cry and Dox co-exposure induced chemosensitization, connected with the Cry effect on eIF4A interaction. We further demonstrated the Cry binding capability on eIF4A and in silico assays suggest Cry inhibition on the RNA-processing domain. Therefore, strategic disruption of protein translation initiation is a druggable pathway by natural compounds during chemoresistance in TNBC. However, plasmatic LDL levels should be closely monitored throughout treatment.
Collapse
Affiliation(s)
- Alina González-Ortiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - César Y. Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Esmeralda Ibarra-López
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Maritza Anahí Calderón-Fernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Leslie Y. López-Cossio
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Raul Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22424, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| |
Collapse
|
4
|
Guevara-Olaya L, Chimal-Vega B, Castañeda-Sánchez CY, López-Cossio LY, Pulido-Capiz A, Galindo-Hernández O, Díaz-Molina R, Ruiz Esparza-Cisneros J, García-González V. LDL Promotes Disorders in β-Cell Cholesterol Metabolism, Implications on Insulin Cellular Communication Mediated by EVs. Metabolites 2022; 12:754. [PMID: 36005626 PMCID: PMC9415214 DOI: 10.3390/metabo12080754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Dyslipidemia is described as a hallmark of metabolic syndrome, promoting a stage of metabolic inflammation (metainflammation) that could lead to misbalances in energetic metabolism, contributing to insulin resistance, and modifying intracellular cholesterol pathways and the renin-angiotensin system (RAS) in pancreatic islets. Low-density lipoprotein (LDL) hypercholesterolemia could disrupt the tissue communication between Langerhans β-cells and hepatocytes, wherein extracellular vesicles (EVs) are secreted by β-cells, and exposition to LDL can impair these phenomena. β-cells activate compensatory mechanisms to maintain insulin and metabolic homeostasis; therefore, the work aimed to characterize the impact of LDL on β-cell cholesterol metabolism and the implication on insulin secretion, connected with the regulation of cellular communication mediated by EVs on hepatocytes. Our results suggest that β-cells can endocytose LDL, promoting an increase in de novo cholesterol synthesis targets. Notably, LDL treatment increased mRNA levels and insulin secretion; this hyperinsulinism condition was associated with the transcription factor PDX-1. However, a compensatory response that maintains basal levels of intracellular calcium was described, mediated by the overexpression of calcium targets PMCA1/4, SERCA2, and NCX1, together with the upregulation of the unfolded protein response (UPR) through the activation of IRE1 and PERK arms to maintain protein homeostasis. The LDL treatment induced metainflammation by IL-6, NF-κB, and COX-2 overexpression. Furthermore, LDL endocytosis triggered an imbalance of the RAS components. LDL treatment increased the intracellular levels of cholesterol on lipid droplets; the adaptive β-cell response was portrayed by the overexpression of cholesterol transporters ABCA1 and ABCG1. Therefore, lipotoxicity and hyperinsulinism induced by LDL were regulated by the natural compound auraptene, a geranyloxyn coumarin modulator of cholesterol-esterification by ACAT1 enzyme inhibition. EVs isolated from β-cells impaired insulin signaling via mTOR/p70S6Kα in hepatocytes, a phenomenon regulated by auraptene. Our results show that LDL overload plays a novel role in hyperinsulinism, mechanisms associated with a dysregulation of intracellular cholesterol, lipotoxicity, and the adaptive UPR, which may be regulated by coumarin-auraptene; these conditions explain the affectations that occur during the initial stages of insulin resistance.
Collapse
Affiliation(s)
- Lizbeth Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - César Yahel Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Leslie Y. López-Cossio
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| |
Collapse
|
5
|
Jiang X, Zhu Y, Liu H, Chen S, Zhang D. Effect of BIN1 on cardiac dysfunction and malignant arrhythmias. Acta Physiol (Oxf) 2020; 228:e13429. [PMID: 31837094 DOI: 10.1111/apha.13429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/24/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is the end-stage syndrome for most cardiac diseases, and the 5-year morbidity and mortality of HF remain high. Malignant arrhythmia is the main cause of sudden death in the progression of HF. Recently, bridging integrator 1 (BIN1) was discovered as a regulator of transverse tubule function and calcium signalling in cardiomyocytes. BIN1 downregulation is linked to abnormal cardiac contraction, and it increases the possibility of malignant arrhythmias preceding HF. Because of the detectability of cardiac BIN1 in peripheral blood, BIN1 may serve as a predictor of HF and may be useful in therapy development. However, the mechanism of BIN1 downregulation in HF and how BIN1 regulates normal cardiac function under physiological conditions remain unclear. In this review, recent progress in the biological studies of BIN1-related cardiomyocytes and the effect of cardiac dysfunction and malignant arrhythmia will be discussed.
Collapse
Affiliation(s)
- Xiao‐Xin Jiang
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Yan‐Rong Zhu
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Hong‐Ming Liu
- Department of Geriatric Cardiology The First Affiliated Hospital of Kunming Medical University Kunming Yunnan P. R. China
| | - Shao‐Liang Chen
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| | - Dai‐Min Zhang
- Department of Cardiology Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu P. R. China
| |
Collapse
|
6
|
Acosta-Montaño P, Rodríguez-Velázquez E, Ibarra-López E, Frayde-Gómez H, Mas-Oliva J, Delgado-Coello B, Rivero IA, Alatorre-Meda M, Aguilera J, Guevara-Olaya L, García-González V. Fatty Acid and Lipopolysaccharide Effect on Beta Cells Proteostasis and its Impact on Insulin Secretion. Cells 2019; 8:cells8080884. [PMID: 31412623 PMCID: PMC6721695 DOI: 10.3390/cells8080884] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic overload by saturated fatty acids (SFA), which comprises β-cell function, and impaired glucose-stimulated insulin secretion are frequently observed in patients suffering from obesity and type 2 diabetes mellitus. The increase of intracellular Ca2+ triggers insulin granule release, therefore several mechanisms regulate Ca2+ efflux within the β-cells, among others, the plasma membrane Ca2+-ATPase (PMCA). In this work, we describe that lipotoxicity mediated mainly by the saturated palmitic acid (PA) (16C) is associated with loss of protein homeostasis (proteostasis) and potentially cell viability, a phenomenon that was induced to a lesser extent by stearic (18C), myristic (14C) and lauric (12C) acids. PA was localized on endoplasmic reticulum, activating arms of the unfolded protein response (UPR), as also promoted by lipopolysaccharides (LPS)-endotoxins. In particular, our findings demonstrate an alteration in PMCA1/4 expression caused by PA and LPS which trigger the UPR, affecting not only insulin release and contributing to β-cell mass reduction, but also increasing reactive nitrogen species. Nonetheless, stearic acid (SA) did not show these effects. Remarkably, the proteolytic degradation of PMCA1/4 prompted by PA and LPS was avoided by the action of monounsaturated fatty acids such as oleic and palmitoleic acid. Oleic acid recovered cell viability after treatment with PA/LPS and, more interestingly, relieved endoplasmic reticulum (ER) stress. While palmitoleic acid improved the insulin release, this fatty acid seems to have more relevant effects upon the expression of regulatory pumps of intracellular Ca2+. Therefore, chain length and unsaturation of fatty acids are determinant cues in proteostasis of β-cells and, consequently, on the regulation of calcium and insulin secretion.
Collapse
Affiliation(s)
- Paloma Acosta-Montaño
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, 22390 Tijuana, Mexico
- Tecnológico Nacional de México/I.T. Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, 22510 Tijuana, Mexico
| | - Esmeralda Ibarra-López
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico
| | - Héctor Frayde-Gómez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico
- Hospital General de Zona No. 30, Instituto Mexicano del Seguro Social, 21100 Mexicali, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Ignacio A Rivero
- Tecnológico Nacional de México/I.T. Tijuana, Centro de Graduados e Investigación en Química, 22000 Tijuana, Mexico
| | - Manuel Alatorre-Meda
- Cátedras CONACyT- Tecnológico Nacional de México/I.T. Tijuana. Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, 22000 Tijuana, Mexico
| | - Jorge Aguilera
- Tecnológico Nacional de México/I.T. Tijuana, Centro de Graduados e Investigación en Química, 22000 Tijuana, Mexico
| | - Lizbeth Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, Mexico.
| |
Collapse
|
7
|
A Novel β-adaptin/c-Myc Complex Formation Modulated by Oxidative Stress in the Control of the Cell Cycle in Macrophages and its Implication in Atherogenesis. Sci Rep 2017; 7:13442. [PMID: 29044181 PMCID: PMC5647411 DOI: 10.1038/s41598-017-13880-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
Our study tested the proposal that c-Myc activation in macrophages is differentially carried out dependent on the intracellular oxidative state of cells and potentially associated to the process of atherogenesis. Under our experimental conditions, the generation of reactive oxygen species carried out by the presence of oxidized low density lipoproteins (oxLDL) or Gram negative bacterial lipopolysaccharides (LPS) modifies the expression of cellular adhesion molecules such as c-Abl, calcium transport proteins such as the plasma membrane Ca2+-ATPase (PMCA), CD47, procaspase-7, CASP7, CHOP, transcriptional activators such as c-Jun and c-Myc and molecules that participate in the process of endocytosis like α- and β-adaptin. We present the first evidence showing that a state of oxidative stress alters c-Myc-dependent activity pathways in macrophages through binding to molecules such as β-adaptin promoting the reversible formation of a complex that presents the ability to regulate the development of the cell cycle. We propose that the subtle regulation carried out through the formation of this c-Myc/β-adaptin complex when cells change from a normal physiological condition to a state of oxidative stress, represents a defense mechanism against the deleterious effects caused by the loss of cell homeostasis.
Collapse
|