1
|
Peng Y, Wu S, Xu Z, Hou D, Li N, Zhang Z, Wang L, Wang H. A prognostic nomogram based on competing endogenous RNA network for clear-cell renal cell carcinoma. Cancer Med 2021; 10:5499-5512. [PMID: 34196116 PMCID: PMC8366097 DOI: 10.1002/cam4.4109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Background Clear‐cell renal cell carcinoma (ccRCC) is stubborn to traditional chemotherapy and radiation treatment, which makes its clinical management a major challenge. Recently, we have made efforts in understanding the etiology of ccRCC. Increasing evidence revealed that the competing endogenous RNA (ceRNA) was involved in the development of varied tumors. However, a comprehensive analysis of the prognostic model based on lncRNA‐miRNA‐mRNA ceRNA regulatory network of ccRCC with large‐scale sample size and RNA‐sequencing expression data is still limited. Methods RNA‐sequencing expression data were taken out from GTEx database and TCGA database, a total of 354 samples with ccRCC and 157 normal controlled samples were included in our study. The ccRCC‐specific genes were obtained by WGCNA and differential expression analysis. Following, the communication of mRNAs and lncRNAs with targeted miRNAs were predicted by MiRcode, starBase, miRTarBase, and TargetScan. A gene signature of eight genes was further constructed by univariate Cox regression, Lasso methods, and multivariate Cox regression analysis. Results A total of 2191 mRNAs and 1377 lncRNAs was identified, and a dysregulated ceRNA network for ccRCC was established using 7 mRNAs, 363 lncRNAs, and 3 miRNAs. Further, a gene signature including eight genes based on this ceRNA was determined followed by the development of a nomogram predicting 1‐, 3‐, and 5‐year survival probability for ccRCC. Conclusion It could contribute to a better understanding of ccRCC tumorigenesis mechanism and guide clinicians to make a more accurate treatment decision.
Collapse
Affiliation(s)
- Yun Peng
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Shangrong Wu
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zihan Xu
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Dingkun Hou
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Nan Li
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zheyu Zhang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, Tianjin Medical University Second Hospital, Hexi, Tianjin, China
| | - Haitao Wang
- Department of Oncology, Tianjin Medical University Second Hospital, Hexi, Tianjin, China
| |
Collapse
|
2
|
The Emerging Role of Immunotherapy in Intrahepatic Cholangiocarcinoma. Vaccines (Basel) 2021; 9:vaccines9050422. [PMID: 33922362 PMCID: PMC8146949 DOI: 10.3390/vaccines9050422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biliary tract cancer, and intrahepatic cholangiocarcinoma (iCC) in particular, represents a rather uncommon, highly aggressive malignancy with unfavorable prognosis. Therapeutic options remain scarce, with platinum-based chemotherapy is being considered as the gold standard for the management of advanced disease. Comprehensive molecular profiling of tumor tissue biopsies, utilizing multi-omics approaches, enabled the identification of iCC’s intratumor heterogeneity and paved the way for the introduction of novel targeted therapies under the scope of precision medicine. Yet, the unmet need for optimal care of patients with chemo-refractory disease or without targetable mutations still exists. Immunotherapy has provided a paradigm shift in cancer care over the past decade. Currently, immunotherapeutic strategies for the management of iCC are under intense research. Intrinsic factors of the tumor, including programmed death-ligand 1 (PD-L1) expression and mismatch repair (MMR) status, are simply the tip of the proverbial iceberg with regard to resistance to immunotherapy. Acknowledging the significance of the tumor microenvironment (TME) in both cancer growth and drug response, we broadly discuss about its diverse immune components. We further review the emerging role of immunotherapy in this rare disease, summarizing the results of completed and ongoing phase I–III clinical trials, expounding current challenges and future directions.
Collapse
|
3
|
Zhang F, Zeng L, Cai Q, Xu Z, Liu R, Zhong H, Mukiibi R, Deng L, Tang X, Xin H. Comprehensive Analysis of a Long Noncoding RNA-Associated Competing Endogenous RNA Network in Wilms Tumor. Cancer Control 2021; 27:1073274820936991. [PMID: 32597194 PMCID: PMC7324900 DOI: 10.1177/1073274820936991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNA (lncRNA) plays crucial roles in various biological processes of different cancers, especially acting as a competing endogenous RNA (ceRNA). However, the role of lncRNA-mediated ceRNA in Wilms tumor (WT), which is the most common malignant kidney cancer in children, remains unknown. In present study, RNA sequence profiles and clinical data of 125 patients with WT consisting of 119 tumor and 6 normal tissues from Therapeutically Applicable Research To Generate Effective Treatments database were analyzed. A total of 1833 lncRNAs, 156 microRNAs (miRNAs), and 3443 messenger RNAs (mRNAs) were identified as differentially expressed (DE) using "DESeq2" package. The lncRNA-miRNA-mRNA ceRNA regulatory network involving 748 DElncRNAs, 33 DEmiRNAs, and 189 DEmRNAs was constructed based on miRcode, Targetscan, miRTarBase, and miRDB database. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that DEmRNAs were mainly enriched in cell proliferation-related processes and tumor-related pathways, respectively, and 13 hub genes were identified by a protein-protein interaction network. Survival analysis detected 48 lncRNAs, 7 miRNAs, and 16 mRNAs to have significant impact on the overall survival of patients with WT. Additionally, we found that 6 DElncRNAs with potential prognostic value were correlated with tumor stage (DENND5B-AS1) and histologic classification (TMPO-AS1, RP3-523K23.2, RP11-598F7.3, LAMP5-AS1, and AC013275.2) of patients with WT. Our research provides a great insight into understanding the molecular mechanism underlying occurrence and progression of WT, as well as the potential to develop targeted therapies and prognostic biomarkers.
Collapse
Affiliation(s)
- Feng Zhang
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Liping Zeng
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | | | - Zihao Xu
- Nanchang University, Nanchang, China
| | - Ruida Liu
- Nanchang University, Nanchang, China
| | | | - Robert Mukiibi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Libin Deng
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiaoli Tang
- Nanchang University, Nanchang, China.,Department of Biochemistry, School of Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Fabris L, Sato K, Alpini G, Strazzabosco M. The Tumor Microenvironment in Cholangiocarcinoma Progression. Hepatology 2021; 73 Suppl 1:75-85. [PMID: 32500550 PMCID: PMC7714713 DOI: 10.1002/hep.31410] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree. A typical hallmark of CCA is that cancer cells are embedded into a dense stroma containing fibrogenic cells, lymphatics and a variety of immune cells. Functional roles of the reactive tumor stroma are not fully elucidated; however, recent studies suggest that the tumor microenvironment plays a key role in the progression and invasiveness of CCA. CCA cells exchange autocrine/paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment. This crosstalk is under the control of signals mediated by various cytokines, chemokines, and growth factors. In addition, extracellular vesicles (EVs), exosomes and microvesicles, containing cargo mediators, such as proteins and RNAs, play a key role in cell-to-cell communication, and particularly in epigenetic regulation thanks to their content in miRNAs. Both cytokine- and EV-mediated communications between CCA cells and other liver cells provide a potential novel target for the management of CCA. This review summarizes current understandings of the tumor microenvironment and intercellular communications in CCA and their role in tumor progression.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy,Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Keisaku Sato
- Hepatology and Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT,Correspondence: Mario Strazzabosco MD, PhD, Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA,
| |
Collapse
|
5
|
Integrated Dissection of lncRNA-Perturbated Triplets Reveals Novel Prognostic Signatures Across Cancer Types. Int J Mol Sci 2020; 21:ijms21176087. [PMID: 32846981 PMCID: PMC7503457 DOI: 10.3390/ijms21176087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNA (lncRNA)/microRNA(miRNA)/mRNA triplets contribute to cancer biology. However, identifying significative triplets remains a major challenge for cancer research. The dynamic changes among factors of the triplets have been less understood. Here, by integrating target information and expression datasets, we proposed a novel computational framework to identify the triplets termed as “lncRNA-perturbated triplets”. We applied the framework to five cancer datasets in The Cancer Genome Atlas (TCGA) project and identified 109 triplets. We showed that the paired miRNAs and mRNAs were widely perturbated by lncRNAs in different cancer types. LncRNA perturbators and lncRNA-perturbated mRNAs showed significantly higher evolutionary conservation than other lncRNAs and mRNAs. Importantly, the lncRNA-perturbated triplets exhibited high cancer specificity. The pan-cancer perturbator OIP5-AS1 had higher expression level than that of the cancer-specific perturbators. These lncRNA perturbators were significantly enriched in known cancer-related pathways. Furthermore, among the 25 lncRNA in the 109 triplets, lncRNA SNHG7 was identified as a stable potential biomarker in lung adenocarcinoma (LUAD) by combining the TCGA dataset and two independent GEO datasets. Results from cell transfection also indicated that overexpression of lncRNA SNHG7 and TUG1 enhanced the expression of the corresponding mRNA PNMA2 and CDC7 in LUAD. Our study provides a systematic dissection of lncRNA-perturbated triplets and facilitates our understanding of the molecular roles of lncRNAs in cancers.
Collapse
|
6
|
Liang L, Zheng YW, Wang YL. miR-4429 Regulates the Proliferation, Migration, Invasion, and Epithelial-Mesenchymal Transition of Cervical Cancer by Targeting FOXM1. Cancer Manag Res 2020; 12:5301-5312. [PMID: 32669877 PMCID: PMC7338043 DOI: 10.2147/cmar.s244167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND miR-4429 acts as an inhibitor in many malignant tumors and participates in the biological processes of them, but the clinical value and potential molecular mechanism of miR-4429 in cervical cancer (CC) are still under investigation. OBJECTIVE To analyze the clinical value and molecular mechanism of miR-4429 in CC. MATERIALS AND METHODS A qRT-PCR assay was employed to determine the levels of miR-4429 and forkhead-box M1 (FOXM1) in CC tissues, CC cell lines (SiHa, CaSki, ME-180, and C33A) and human normal immortalized epithelial cell lines (HaCaT). The proliferation, migration, invasion, and apoptosis abilities of ME-180 and C33A cells were detected, and the epithelial-to-mesenchymal transition (EMT)-related proteins in the cells were also determined. RESULTS MiR-4429 acted as a tumor suppressor gene in CC tissues and cells and was linked to lymph node metastasis and International Federation of Gynecology and Obstetrics (FIGO) staging. The survival analysis revealed that lymph node metastasis, high FIGO staging, and low miR-4429 expression were all related to the unfavorable prognosis of the patients, and the dual-luciferase reporter assay revealed that FOXM1 was the target of miR-4429. Both overexpression of miR-4429 and knock-down of FOXM1 inhibited the proliferation, migration, invasion, and EMT of CCCs, and accelerated the apoptosis of them. Conversely, both knockdown of miR-4429 and overexpression of FOXM1 promoted those biological behaviors of the cells. Moreover, the rescue experiment revealed that the overexpression of FOXM1 reversed the influences of miR-4429 overexpression on the proliferation, migration, invasion, and EMT of CCCs. CONCLUSION miR-4429 acts as a tumor suppressor in CC and can directly target FOXM1 to regulate the proliferation, migration, invasion, apoptosis and EMT of CCCs, so miR-4429 is expected to be a new therapeutic target for CC.
Collapse
Affiliation(s)
- Lin Liang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Yu Wei Zheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Yan Li Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| |
Collapse
|
7
|
Li C, Li X, Li G, Sun L, Zhang W, Jiang J, Ge Q. Identification of a prognosis‑associated signature associated with energy metabolism in triple‑negative breast cancer. Oncol Rep 2020; 44:819-837. [PMID: 32582991 PMCID: PMC7388543 DOI: 10.3892/or.2020.7657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
At present, a large number of exciting results have been found regarding energy metabolism within the triple-negative breast cancer (TNBC) field. Apart from aerobic glycolysis, a number of other catabolic pathways have also been demonstrated to participate in energy generation. However, the prognostic value of energy metabolism for TNBC currently remains unclear. In the present study, the association between gene expression profiles of energy metabolism and outcomes in patients with TNBC was examined using datasets obtained from the Gene Expression Omnibus and The Cancer Genome Atlas. In total, four robust TNBC subtypes were identified on the basis of negative matrix factorization clustering and gene expression patterns, which exhibited distinct immunological, molecular and prognostic (disease-free survival) features. The differentially expressed genes were subsequently identified from the subgroup that demonstrated the poorest prognosis compared with the remaining 3 subgroups, where their biological functions were assessed further by means of gene ontology enrichment analysis. Any signatures found to be associated with energy metabolism were then established using the Cox proportional hazards model to assess patient prognosis. According to results of Kaplan-Meier analysis, the constructed signature consisting of eight genes that were associated with energy metabolism distinguished patient outcomes into low- and high-risk groups. In addition, this signature, which was found to be markedly associated with the clinical characteristics of the patients, served as an independent factor in predicting TNBC patient prognosis. According to gene set enrichment analysis, the gene sets related to the high-risk group participated in the MAPK signal transduction pathway, focal adhesion and extracellular matrix receptor interaction, whilst those related to the low-risk group were revealed to be mainly associated with mismatch repair and propanoate metabolism. Findings from the present study shed new light on the role of energy metabolism within TNBC, where the eight-gene signature associated with energy metabolism constructed can be utilized as a new prognostic marker for predicting survival in patients with TNBC.
Collapse
Affiliation(s)
- Chao Li
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Xujun Li
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Guangming Li
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Long Sun
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Wei Zhang
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Jing Jiang
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Qidong Ge
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
8
|
Fei Q, Song F, Jiang X, Hong H, Xu X, Jin Z, Zhu X, Dai B, Yang J, Sui C, Xu M. LncRNA ST8SIA6-AS1 promotes hepatocellular carcinoma cell proliferation and resistance to apoptosis by targeting miR-4656/HDAC11 axis. Cancer Cell Int 2020; 20:232. [PMID: 32536820 PMCID: PMC7288512 DOI: 10.1186/s12935-020-01325-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) results in development of human diseases including hepatocellular carcinoma (HCC). Although several HCC related lncRNAs have been reported, the biological functions of many lncRNAs during the development of HCC remains unknown. Methods The expression of ST8SIA6-AS1 was studied by realtime PCR (RT-qPCR) and bioinformatic analysis. The biological functions of ST8SIA6-AS1 was examined by CCK-8 assay and flow cytometry analysis. The target of ST8SIA6-AS1 was analyzed by bioinformatic analysis and validated by dual luciferase reporter assay, western blotting and RT-qPCR. Results In this study we demonstrated that ST8SIA6-AS1 was an upregulated lncRNA in hepatocellular carcinoma. SiRNA-mediated knockdown of ST8SIA6-AS1 repressed cell proliferation and induced cell apoptosis in HCC cells. Bioinformatic analysis and RT-qPCR further showed that ST8SIA6-AS1 mainly located in cytoplasm. Dual luciferase reporter assay further revealed that ST8SIA6-AS1 interacted with miR-4656 in HCC cells. In addition, HDAC11 was identified as a target gene in HCC cells and ST8SIA6-AS1 could upregulate HDAC11 via sponging miR-4656. Transfection of recombinant HDAC11 partially rescued the inhibition of cell proliferation and increase of cell apoptosis inducing by knockdown of ST8SIA6-AS1. Conclusion In conclusion, our findings suggested that ST8SIA6-AS1 was a novel upregulated lncRNA in HCC and could facilitate cell proliferation and resistance to cell apoptosis via sponging miR-4656 and elevation of HDAC11, which might be a promising biomarker for patients with HCC.
Collapse
Affiliation(s)
- Qiang Fei
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Feihong Song
- Department of Special Treatment and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438 China
| | - Xinwei Jiang
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Han Hong
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Xiaoyong Xu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Zhengkang Jin
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Xiang Zhu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| | - Binghua Dai
- Department of Special Treatment and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438 China
| | - Jiamei Yang
- Department of Special Treatment and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438 China
| | - Chengjun Sui
- Department of Special Treatment and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438 China
| | - Minhui Xu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, 215001 Suzhou, China
| |
Collapse
|
9
|
Sato K, Glaser S, Francis H, Alpini G. Concise Review: Functional Roles and Therapeutic Potentials of Long Non-coding RNAs in Cholangiopathies. Front Med (Lausanne) 2020; 7:48. [PMID: 32154257 PMCID: PMC7045865 DOI: 10.3389/fmed.2020.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNAs with lengths exceeding 200 nucleotides that are not translated into proteins. It is well-known that small non-coding RNAs, such as microRNAs (miRNAs), regulate gene expression and play an important role in cholangiopathies. Recent studies have demonstrated that lncRNAs may also play a key role in the pathophysiology of cholangiopathies. Patients with cholangiopathies often develop cholangiocarcinoma (CCA), which is cholangiocyte-derived cancer, in the later stage. Cholangiocytes are a primary target of therapies for cholangiopathies and CCA development. Previous studies have demonstrated that expression levels of lncRNAs are altered in the liver of cholangiopathies or CCA tissues. Some lncRNAs regulate gene expression by inhibiting functions of miRNAs leading to diseased liver conditions or CCA progression, suggesting that lncRNAs could be a novel therapeutic target for those disorders. This review summarizes current understandings of functional roles of lncRNAs in cholangiopathies and seek their potentials for novel therapies.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, TX, United States
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
10
|
Wang K, Ma L, Tang J, Yu Q, Shen Y, Wei Y, Zhu C, Deng Z, Zhang W. LncRNA00518 promotes cell proliferation through regulating miR-101 in bladder cancer. J Cancer 2020; 11:1468-1477. [PMID: 32047553 PMCID: PMC6995372 DOI: 10.7150/jca.35710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of our study is to elucidate the expression of lncRNA00518 (lnc00518) in the bladder cancer, and its potential mechanism in regulating the development of bladder cancer. The expression of lnc00518 in bladder cancer tissues and cells was examined by qRT-PCR. Correlation between lnc00518 expression with clinicopathologic characteristics and prognosis of bladder cancer patients was analyzed. In vitro effects of lnc00518 on the cellular behaviors of bladder cancer cells were explored. Moreover, in vivo effect of lnc00518 was evaluated by subcutaneous tumorigenesis in nude mice. The possible miRNA targets of lnc00518 were predicted by bioinformatics and further confirmed by dual-luciferase reporter gene assay, RIP and rescue experiments. Lnc00518 was highly expressed in bladder cancer tissues and cells. Lnc00518 expression was correlated with TNM staging and histological grade of bladder cancer. Besides, the overall survival was lower in bladder cancer patients with high expression of lnc00518 relative to those with low expression. Overexpression of lnc00518 enhanced proliferative, invasive, migratory potentials and clonality, but shortened G0/G1 phase of bladder cancer cells. Lnc00518 knockdown obtained the opposite trends. In vivo experiments revealed that lnc00518 knockdown inhibited subcutaneous tumorigenesis in nude mice. QRT-PCR results indicated that lnc00518 expression was negatively correlated with miRNA-101 expression in bladder cancer cells. Through dual-luciferase reporter gene assay and RIP, we confirmed the binding between lnc00518 and miRNA-101. Furthermore, EZH2 was verified to be the target of miRNA-101. MiRNA-101 knockdown reversed the inhibitory roles of lnc00518 knockdown in proliferative, migratory and invasive potentials of bladder cancer cells. Lnc00518 is highly expressed in bladder cancer and can be served as a predictor of poor prognosis. Lnc00518 promotes the proliferative, invasive and migratory potentials of bladder cancer by upregulating EZH2 via competitively binding to miRNA-101.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of Urology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Long Ma
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingyuan Tang
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qiu Yu
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yang Shen
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yunfei Wei
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Chen Zhu
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhonglei Deng
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
11
|
Xu W, Yu S, Xiong J, Long J, Zheng Y, Sang X. CeRNA regulatory network-based analysis to study the roles of noncoding RNAs in the pathogenesis of intrahepatic cholangiocellular carcinoma. Aging (Albany NY) 2020; 12:1047-1086. [PMID: 31956102 PMCID: PMC7053603 DOI: 10.18632/aging.102634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023]
Abstract
To explore and understand the competitive mechanism of ceRNAs in intrahepatic cholangiocarcinoma (ICC), we used bioinformatics analysis methods to construct an ICC-related ceRNA regulatory network (ceRNET), which contained 340 lncRNA-miRNA-mRNA regulatory relationships based on the RNA expression datasets in the NCBI GEO database. We identified the core regulatory pathway RP11-328K4.1-hsa-miR-27a-3p-PROS1, which is related to ICC, for further validation by molecular biology assays. GO analysis of 44 differentially expressed mRNAs in ceRNET revealed that they were mainly enriched in biological processes including “negative regulation of epithelial cell proliferation” and "positive regulation of activated T lymphocyte proliferation.” KEGG analysis showed that they were mainly enriched in the “complement and coagulation cascade” pathway. The molecular biology assay showed that lncRNA RP11-328K4.1 expression was significantly lower in the cancerous tissues and peripheral plasma of ICC patients than in normal controls (p<0.05). In addition, hsa-miR-27a-3p was found to be significantly upregulated in the cancer tissues and peripheral plasma of ICC patients (p<0.05). Compared to normal controls, the expression of PROS1 mRNA was significantly downregulated in ICC patient cancer tissues (p<0.05) but not in peripheral plasma (p>0.05). Furthermore, ROC analysis revealed that RP11-328K4.1, hsa-miR-27a-3p, and PROS1 had significant diagnostic value in ICC. We concluded that the upregulation of lncRNA RP11-328K4.1, which might act as a miRNA sponge, exerts an antitumor effect in ICC by eliminating the inhibition of PROS1 mRNA expression by oncogenic miRNA hsa-miR-27a.
Collapse
Affiliation(s)
- Weiyu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xi-Cheng, Beijing 100050, People's Republic of China
| | - Si Yu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Jianping Xiong
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Xi-Cheng, Beijing 100050, People's Republic of China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| |
Collapse
|
12
|
Angenard G, Merdrignac A, Louis C, Edeline J, Coulouarn C. Expression of long non-coding RNA ANRIL predicts a poor prognosis in intrahepatic cholangiocarcinoma. Dig Liver Dis 2019; 51:1337-1343. [PMID: 31040073 DOI: 10.1016/j.dld.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a deadly cancer worldwide associated with an increased incidence, limited therapeutic options and absence of reliable prognostic biomarkers. Long non-coding RNAs (lncRNA) emerge as relevant biomarkers in cancer being associated with tumor progression. However, lncRNA have been poorly investigated in iCCA. AIM To identify lncRNA significantly associated with the survival of patients with iCCA after tumor resection for curative intent. METHODS Gene expression profiling and Q-RT-PCR were performed from a cohort of 39 clinically well-annotated iCCA. Univariate Cox proportional hazards model with Wald Statistic was used to identify lncRNA significantly associated with overall (OS) and/or disease-free (DFS) survival. RESULTS A signature made of 9 lncRNA was identified to be significantly (P < 0.05) associated with OS and DFS, including 4 lncRNA (lnc-CDK9-1, XLOC_l2_009441, CDKN2B-AS1, HOXC13-AS) highly expressed in poor prognosis iCCA and 5 lncRNA (lnc-CCHCR1-1, lnc-AF131215.3.1, lnc-CBLB-5, COL18A1-AS2, lnc-RELL2-1) highly expressed in better prognosis iCCA. We further validated CDKN2B-AS1 (ANRIL) as a poor prognosis biomarker, not only in iCCA, but also in hepatocellular carcinoma, kidney renal clear cell carcinoma and uterine corpus endometrial carcinoma. CONCLUSIONS We report a prognosis lncRNA signature in iCCA and the clinical relevance of CDKN2B-AS1 (ANRIL) overexpression in several cancers.
Collapse
Affiliation(s)
- Gaëlle Angenard
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), CHU Rennes, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Aude Merdrignac
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), CHU Rennes, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), CHU Rennes, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), CHU Rennes, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), CHU Rennes, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
13
|
Yan Y, Lu Y, Mao K, Zhang M, Liu H, Zhou Q, Lin J, Zhang J, Wang J, Xiao Z. Identification and validation of a prognostic four-genes signature for hepatocellular carcinoma: integrated ceRNA network analysis. Hepatol Int 2019; 13:618-630. [PMID: 31321712 PMCID: PMC6744548 DOI: 10.1007/s12072-019-09962-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most aggressive malignant tumors, with a poor long-term prognosis worldwide. The functional deregulations of global transcriptome were associated with the genesis and development of HCC, but lacks systematic research and validation. METHODS A total of 519 postoperative HCC patients were included. We built an interactive and visual competing endogenous RNA network. The prognostic signature was established with the least absolute shrinkage and selection operator algorithm. Multivariate Cox regression analysis was used to screen for independent prognostic factors for HCC overall survival. RESULTS In the training set, we identified a four-gene signature (PBK, CBX2, CLSPN, and CPEB3) and effectively predicted the overall survival. The survival times of patients in the high-score group were worse than those in the low-score group (p = 0.0004), and death was also more likely in the high-score group (HR 2.444, p < 0.001). The results were validated in internal validation set (p = 0.0057) and two external validation cohorts (HR 2.467 and 2.6). The signature (AUCs of 1, 2, 3 years were 0.716, 0.726, 0.714, respectively) showed high prognostic accuracy in the complete TCGA cohort. CONCLUSIONS In conclusion, we successfully built a more extensive ceRNA network for HCC and then identified a four-gene-based signature, enabling prediction of the overall survival of patients with HCC.
Collapse
Affiliation(s)
- Yongcong Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yingjuan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kai Mao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Mengyu Zhang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haohan Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qianlei Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianhong Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.,RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510120, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Zhang F, Yang C, Xing Z, Liu P, Zhang B, Ma X, Huang L, Zhuang L. LncRNA GAS5-mediated miR-1323 promotes tumor progression by targeting TP53INP1 in hepatocellular carcinoma. Onco Targets Ther 2019; 12:4013-4023. [PMID: 31190897 PMCID: PMC6535457 DOI: 10.2147/ott.s209439] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Background: MiR-1323 was identified in 2006. Until now, the roles and mechanisms of miR-1323 in the progression of cancers including hepatocellular carcinoma (HCC) remain unknown. The aim of this study was to investigate the expressions, roles and mechanisms of miR-1323 in HCC development. Methods: QRT-PCR was used to evaluate the expressions of miR-1323, GAS5 and TP53INP1 in HCC tissues and cell lines. CCK-8 assay, transwell invasion assay and flow cytometry assay were conducted to evaluate the proliferation, invasion and apoptosis of HCC cells. Luciferase assay was used to identify microRNA-target interaction. Results: Firstly, our results showed that miR-1323 promoted proliferation and invasion, and inhibited apoptosis of HCC cells. Secondly, we found that TP53INP1 was a direct target of miR-1323 and could reverse the effects of miR-1323 on proliferation, invasion and apoptosis of HCC cells. Thirdly, our results showed that long non-coding RNA (lncRNA) GAS5 and miR-1323 could interact with each other and affect biological processes of HCC cells. Furthermore, we identified the negative correlations between miR-1323 and TP53INP1, and between miR-1323 and GAS5 in tumor tissues of patients with HCC. Conclusion: Taken together, our study revealed the important roles of GAS5/miR-1323/TP53INP1 axis in HCC progression. This study also provided promising strategies for targeted therapy of patients with HCC.
Collapse
Affiliation(s)
- Fengjuan Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Chao Yang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Zhiyuan Xing
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Pei Liu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Bo Zhang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, People's Republic of China
| | - Xiang Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Liuye Huang
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, People's Republic of China
| | - Likun Zhuang
- Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| |
Collapse
|
15
|
A Simple Competing Endogenous RNA Network Identifies Novel mRNA, miRNA, and lncRNA Markers in Human Cholangiocarcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3526407. [PMID: 31019967 PMCID: PMC6451803 DOI: 10.1155/2019/3526407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
Abstract
Background Cholangiocarcinoma (CCA) is the second most common malignant primary liver tumor and has shown an alarming increase in incidence over the last two decades. However, the mechanisms behind tumorigenesis and progression remain insufficient. The present study aimed to uncover the underlying regulatory mechanism on CCA and find novel biomarkers for the disease prognosis. Method The RNA-sequencing (RNA-seq) datasets of lncRNAs, miRNAs, and mRNAs in CCA as well as relevant clinical information were obtained from the Cancer Genome Atlas (TCGA) database. After pretreatment, differentially expressed RNAs (DERNAs) were identified and further interrogated for their correlations with clinical information. Prognostic RNAs were selected using univariate Cox regression. Then, a ceRNA network was constructed based on these RNAs. Results We identified a total of five prognostic DEmiRNAs, 63 DElncRNAs, and 90 DEmRNAs between CCA and matched normal tissues. Integrating the relationship between the different types of RNAs, an lncRNA-miRNA-mRNA network was established and included 28 molecules and 47 interactions. Screened prognostic RNAs involved in the ceRNA network included 3 miRNAs (hsa-mir-1295b, hsa-mir-33b, and hsa-mir-6715a), 7 lncRNAs (ENSG00000271133, ENSG00000233834, ENSG00000276791, ENSG00000241155, COL18A1-AS1, ENSG00000274737, and ENSG00000235052), and 18 mRNAs (ANO9, FUT4, MLLT3, ABCA3, FSCN2, GRID2IP, NCK2, MACC1, SLC35E4, ST14, SH2D3A, MOB3B, ACTL10, RAB36, ATP1B3, MST1R, SEMA6A, and SEL1L3). Conclusions Our study identified novel prognostic makers and predicted a previously unknown ceRNA regulatory network in CCA and may provide novel insight into a further understanding of lncRNA-mediated ceRNA regulatory mechanisms in CCA.
Collapse
|
16
|
Li J, Huang L, Li Z, Zhong X, Tai S, Jiang X, Cui Y. Functions and roles of long noncoding RNA in cholangiocarcinoma. J Cell Physiol 2019; 234:17113-17126. [PMID: 30888066 DOI: 10.1002/jcp.28470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is one of the most fatal cancers in humans, with a gradually increasing incidence worldwide. The efficient diagnostic and therapeutic measures for CCA to reduce mortality are urgently needed. Long noncoding RNAs (lncRNAs) may provide the potential diagnostic and therapeutic option for suppressing the CCA development. LncRNAs are a type of non-protein-coding RNAs, which are larger than 200 nucleotides in length. Increasing evidence reveals that lncRNAs exhibit critical roles in the carcinogenesis and development of CCA. Deregulation of lncRNAs impacts the proliferation, migration, invasion, and antiapoptosis of CCA cells by multiple sophisticated mechanisms. Consequently, lncRNAs likely represent promising biomarkers or intervention targets of CCA. In this review, we summarize current studies regarding the biological functions and regulatory mechanisms of diverse lncRNAs in CCA.
Collapse
Affiliation(s)
- Jinglin Li
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lining Huang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenglong Li
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangyu Zhong
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sheng Tai
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xingming Jiang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Jiang F, Ling X. The Advancement of Long Non-Coding RNAs in Cholangiocarcinoma Development. J Cancer 2019; 10:2407-2414. [PMID: 31258745 PMCID: PMC6584350 DOI: 10.7150/jca.32411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignancy with increasing incidence in recent years. CCA patients are usually diagnosed at advanced stage due to lack of apparent symptoms and specifically diagnostic markers. Nowadays, surgical removal is the only effective method for CCA whereas overall 5-year-survival rate keeps around 10%. Long-noncoding RNA (lncRNA), a subtype of noncoding RNA, is widely studied to be abnormally expressed in multiple cancers including CCA. LncRNA can promote proliferation, migration, invasion and inhibit apoptosis of CCA. Moreover, lncRNA is negatively correlated with the prognosis of CCA. LncRNA may contribute to the development of CCA via modulating gene transcription, sponging microRNA, regulating CCA-related signaling pathways or protein expression. LncRNA is thought to be potential diagnostic markers and therapeutic targets for CCA.
Collapse
|
18
|
Wu L, Li Y, Zhang D, Huang Z, Du B, Wang Z, Yang L, Zhang Y. LncRNA NEXN-AS1 attenuates proliferation and migration of vascular smooth muscle cells through sponging miR-33a/b. RSC Adv 2019; 9:27856-27864. [PMID: 35530470 PMCID: PMC9070771 DOI: 10.1039/c9ra06282c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Non-protein-coding RNAs (lncRNAs) are emerging as important regulators in disease pathogenesis, including atherosclerosis (AS). Here, we investigated the role and underlying mechanisms of nexilin F-actin binding protein antisense RNA 1 (NEXN-AS1) on the proliferation and migration of vascular smooth muscle cells (VSMCs). Our data revealed that ox-LDL treatment resulted in decreased NEXN-AS1 expression and increased miR-33a/b levels in human aorta VSMCs (HA-VSMCs) in dose- and time-dependent manners. Overexpression of NEXN-AS1 mitigated the proliferation and migration of HA-VSMCs under ox-LDL stimulation using CCK-8 and wound-healing assays. Moreover, dual-luciferase reporter and RNA immunoprecipitation assays verified that NEXN-AS1 acted as molecular sponges of miR-33a and miR-33b in HA-VSMCs. MiR-33a or miR-33b silencing attenuated the proliferation and migration of ox-LDL-treated HA-VSMCs. Furthermore, miR-33a or miR-33b mediated the inhibitory effects of NEXN-AS1 overexpression on the proliferation and migration of ox-LDL-treated HA-VSMCs. Our study suggested that high level of NEXN-AS1 mitigated VSMC proliferation and migration under ox-LDL stimulation at least partly through sponging miR-33a and miR-33b, illuminating NEXN-AS1 as a novel therapeutic approach for AS treatment. Non-protein-coding RNAs (lncRNAs) are emerging as important regulators in disease pathogenesis, including atherosclerosis (AS).![]()
Collapse
Affiliation(s)
- Leiming Wu
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Yapeng Li
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Dianhong Zhang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Zhen Huang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Binbin Du
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Zheng Wang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Lulu Yang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Yanzhou Zhang
- Department of Cardiology
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| |
Collapse
|