1
|
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M, Taheri M. Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol 2025; 207:104612. [PMID: 39755160 DOI: 10.1016/j.critrevonc.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing. Advances in RNA sequencing and bioinformatics tools have enabled the identification and functional annotation of circRNAs across different cancer types. Clinically, circRNAs demonstrate high specificity and sensitivity in samples, offering potential as diagnostic and prognostic biomarkers. Additionally, therapeutic strategies involving circRNA mimics, inhibitors, and delivery systems are under investigation. However, their precise mechanisms remain unclear, and more clinical evidence is needed regarding their roles in cancer hallmarks. Understanding circRNAs will pave the way for novel diagnostic and therapeutic approaches, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Rayan Mazin Jaafar
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sanati M, Ghafouri-Fard S. The role of circRNAs in resistance to doxorubicin. Cell Commun Signal 2024; 22:572. [PMID: 39614315 PMCID: PMC11607985 DOI: 10.1186/s12964-024-01952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Doxorubicin is an anthracyline recognized as an antitumor antibiotic agent. It is widely used in the chemotherapeutic regimens in different types of cancers. Resistance to doxorubicin is a major clinical obstacle and main cause of failure in cancer chemotherapy. Among different mechanisms involved in this process, the role of epigenetic factors has been highlighted. Circular RNAs (circRNAs) have a prominent role in this process. Here, we summarize the recent findings on the role of circRNAs in doxorubicin resistance, particularly in breast cancer and osteosarcoma and underscore their clinical application as potential biomarkers and therapeutic targets in this field. Recognition of the underlying mechanism of circRNAs involvement in doxorubicin resistance will expand our understanding of chemoresistance establishment and may provide a prospect to develop circRNA-based predictive biomarkers of chemotherapy or therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Mahla Sanati
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wu S, Luo T, Lei X, Yang X. Emerging role of competing endogenous RNA in lung cancer drug resistance. J Chemother 2024; 36:546-565. [PMID: 38124356 DOI: 10.1080/1120009x.2023.2294582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer remains one of the most common malignant cancers worldwide, and its survival rate is extremely low. Chemotherapy, the mainstay of lung cancer treatment, is not as effective as it could be due to the development of cellular resistance. The molecular mechanisms of drug resistance in lung cancer remain to be elucidated. Accumulating evidence suggests that ceRNAs are involved in various carcinogenesis and development. CeRNA is a transcript that regulates each other through competition with miRNA. However, the relationship between ceRNAs and chemoresistance in lung cancer remains unclear. In this narrative review, we provided a summary of treatment approaches that focus on ceRNA networks to overcome drug resistance.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Ting Luo
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
4
|
Li H, Lei Y, Chen N, Guo G, Xiang X, Huang Y. circRNA-CPA4 Regulates Cell Proliferation and Apoptosis of Non-small Cell Lung Cancer via the miR-1183/PDPK1 Axis. Biochem Genet 2024; 62:4087-4102. [PMID: 38273153 DOI: 10.1007/s10528-023-10641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Non-small-cell lung cancer (NSCLC) stands as a prevalent subtype of lung cancer, with circular RNAs emerging as key players in cancer development. This study elucidates the role of circRNA-CPA4 in NSCLC. Elevated circRNA-CPA4 expression in NSCLC lines was confirmed through qRT-PCR. Silencing circRNA-CPA4 with shRNA revealed, through CCK-8, colony formation, and flow cytometry assays, a notable constraint on proliferation and promotion of apoptosis in NSCLC cells. Subcellular localization analysis, RNA immunoprecipitation, and expression level assessments were employed to decipher the intricate interplay among miR-1183, circRNA-CPA4, and PDPK1. Results demonstrated heightened circRNA-CPA4 levels in NSCLC, and its knockdown curtailed NSCLC growth in vivo. Acting as a molecular sponge for miR-1183, circRNA-CPA4 regulated PDPK1 expression. Conversely, inhibiting miR-1183 counteracted the impact of circRNA-CPA4 silencing, reinstating NSCLC cell proliferation, and impeding apoptosis. Overall, this study unveils a novel mechanism: circRNA-CPA4 promotes PDPK1 expression by sequestering miR-1183, fostering NSCLC cell proliferation, and hindering apoptosis.
Collapse
Affiliation(s)
- Heng Li
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunzhou Road 519, Kunming, 650118, China
| | - Nan Chen
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Gang Guo
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Xudong Xiang
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Yunchao Huang
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China.
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunzhou Road 519, Kunming, 650118, China.
| |
Collapse
|
5
|
Guo Y, Pan J, Gao X, Zheng Y. Circ-PITX1 promotes non-small-cell lung cancer progression through regulating ETS1 expression via miR-615-5p. Thorac Cancer 2024; 15:1946-1957. [PMID: 39138880 PMCID: PMC11463087 DOI: 10.1111/1759-7714.15414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), produced by reverse splicing, act as important players in human cancers. We aimed to assess the biological functions of circRNA pituitary homeobox 1 (circ-PITX1) in non-small-cell lung cancer (NSCLC). METHODS qRT-PCR was employed to determine RNA expression. Biological behaviors of NSCLC cells were assessed by CCK-8, colony formation, EdU assay, flow cytometry, wound healing, and transwell assays. Glutamine catabolism was examined via the measurement of glutamine consumption, α-ketoglutarate levels, as well as ATP levels. Protein levels were detected by western blot assays. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to reveal the mechanism responsible for circ-PITX1 regulating NSCLC cell malignancy. The murine xenograft model was established to investigate circ-PITX1's effect on tumor formation. RESULTS Circ-PITX1 was overexpressed in NSCLC tissue samples and cells. Its low expression repressed NSCLC cell proliferation and motility. Moreover, our data revealed its downregulation inhibited glutamine catabolism and tumor formation and promoted cell apoptosis. In addition, circ-PITX1 bound to miR-615-5p, and its inhibitory effect on tumor cellular behaviors could be reversed after decreasing miR-615-5p expression. The miRNA targeted E26 transformation specific-1 (ETS1), whose upregulation abolished miR-615-5p overexpression-induced effects in NSCLC cells. Furthermore, circ-PITX1 positively modulated ETS1 production through interaction with miR-615-5p. CONCLUSION Circ-PITX1 facilitated NSCLC progression via modulating miR-615-5p/ETS1 pathway.
Collapse
Affiliation(s)
- Yang Guo
- Department of Pulmonary and Critical Care MedicineZhejiang Jinhua Guangfu Tumor HospitalJinhuaChina
| | - Jianfang Pan
- Department of Pulmonary and Critical Care MedicineZhejiang Jinhua Guangfu Tumor HospitalJinhuaChina
| | - Xiaofei Gao
- Department of Pulmonary and Critical Care MedicineZhejiang Jinhua Guangfu Tumor HospitalJinhuaChina
| | - Yan Zheng
- Department of Pulmonary and Critical Care MedicineZhejiang Jinhua Guangfu Tumor HospitalJinhuaChina
| |
Collapse
|
6
|
Liu W, Sun Y, Huo Y, Zhang L, Zhang N, Yang M. Circular RNAs in lung cancer: implications for preventing therapeutic resistance. EBioMedicine 2024; 107:105309. [PMID: 39191172 PMCID: PMC11445705 DOI: 10.1016/j.ebiom.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
LC is one of the most common malignant tumours that often presents with no distinct symptoms in the early stages, leading to late diagnoses when patients are at an advanced stage and no longer suitable for surgical treatment. Although adjuvant treatments are available, patients frequently develop tolerance to these treatments over time, resulting in poor prognoses for patients with advanced LC. Recently, circular RNAs (circRNAs), a type of non-coding RNA, have gained significant attention in LC research. Owing to their unique circular structure, circRNAs are highly stable within cells. This review systematically summarises the expression, characteristics, biological functions, and molecular regulatory mechanisms of circRNAs involved in therapy resistance as well as the potential applications in early diagnosis and gene targeting therapy in LC.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China
| | - Yawen Sun
- Department of Scientific Research and Education, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Li Q, Zhang Y, Jin P, Chen Y, Zhang C, Geng X, Mun KS, Phang KC. New insights into the potential of exosomal circular RNAs in mediating cancer chemotherapy resistance and their clinical applications. Biomed Pharmacother 2024; 177:117027. [PMID: 38925018 DOI: 10.1016/j.biopha.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy resistance typically leads to tumour recurrence and is a major obstacle to cancer treatment. Increasing numbers of circular RNAs (circRNAs) have been confirmed to be abnormally expressed in various tumours, where they participate in the malignant progression of tumours, and play important roles in regulating the sensitivity of tumours to chemotherapy drugs. As exosomes mediate intercellular communication, they are rich in circRNAs and exhibit a specific RNA cargo sorting mechanism. By carrying and delivering circRNAs, exosomes can promote the efflux of chemotherapeutic drugs and reduce intracellular drug concentrations in recipient cells, thus affecting the cell cycle, apoptosis, autophagy, angiogenesis, invasion and migration. The mechanisms that affect the phenotype of tumour stem cells, epithelial-mesenchymal transformation and DNA damage repair also mediate chemotherapy resistance in many tumours. Exosomal circRNAs are diagnostic biomarkers and potential therapeutic targets for reversing chemotherapy resistance in tumours. Currently, the rise of new fields, such as machine learning and artificial intelligence, and new technologies such as biosensors, multimolecular diagnostic systems and platforms based on circRNAs, as well as the application of exosome-based vaccines, has provided novel ideas for precision cancer treatment. In this review, the recent progress in understanding how exosomal circRNAs mediate tumour chemotherapy resistance is reviewed, and the potential of exosomal circRNAs in tumour diagnosis, treatment and immune regulation is discussed, providing new ideas for inhibiting tumour chemotherapy resistance.
Collapse
Affiliation(s)
- Qiang Li
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuhao Zhang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Peikan Jin
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Yepeng Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chuchu Zhang
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiuchao Geng
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Kein Seong Mun
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kean Chang Phang
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
8
|
Mafi A, Hedayati N, Milasi YE, Kahkesh S, Daviran M, Farahani N, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A. The function and mechanism of circRNAs in 5-fluorouracil resistance in tumors: Biological mechanisms and future potential. Pathol Res Pract 2024; 260:155457. [PMID: 39018926 DOI: 10.1016/j.prp.2024.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
5-Fluorouracil (5-FU) is a well-known chemotherapy drug extensively used in the treatment of breast cancer. It works by inhibiting cancer cell proliferation and inducing cell death through direct incorporation into DNA and RNA via thymidylate synthase (TS). Circular RNAs (circRNAs), a novel family of endogenous non-coding RNAs (ncRNAs) with limited protein-coding potential, contribute to 5-FU resistance. Their identification and targeting are crucial for enhancing chemosensitivity. CircRNAs can regulate tumor formation and invasion by adhering to microRNAs (miRNAs) and interacting with RNA-binding proteins, regulating transcription and translation. MiRNAs can influence enzymes responsible for 5-FU metabolism in cancer cells, affecting their sensitivity or resistance to the drug. In the context of 5-FU resistance, circRNAs can target miRNAs and regulate biological processes such as cell proliferation, cell death, glucose metabolism, hypoxia, epithelial-to-mesenchymal transition (EMT), and drug efflux. This review focuses on the function of circRNAs in 5-FU resistance, discussing the underlying molecular pathways and biological mechanisms. It also presents recent circRNA/miRNA-targeted cancer therapeutic strategies for future clinical application.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Minoo Daviran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Feng Y, Zhang T, Liu H. circPDK1 competitively binds miR-4731-5p to mediate GIGYF1 expression and increase paclitaxel sensitivity in non-small cell lung cancer. Discov Oncol 2024; 15:157. [PMID: 38733530 PMCID: PMC11088590 DOI: 10.1007/s12672-024-01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVE To investigate the action of circPDK1 in paclitaxel (PTX) resistance in non-small cell lung cancer (NSCLC). METHODS circPDK1, miR-4731-5p, and GIGYF1 levels were determined by RT-qPCR and Western blot. Cell proliferation was detected by CCK-8 and colony formation assay, apoptosis by flow cytometry, invasion by Transwell assay. The targeting relationship between miR-4731-5p and circPDK1 or GIGYF1 was confirmed by dual luciferase reporter gene and RIP assay. A xenograft tumor model was established to determine the role of circPDK1 in PTX resistance. RESULTS circPDK1 was overexpressed in PTX-resistant NSCLC, and depleting circPDK1 hampered proliferation and invasion of PTX-resistant cells, activated apoptosis, and improved PTX sensitivity. circPDK1 bound to miR-4731-5p, and increasing miR-4731-5p expression salvaged the effect of circPDK1 depletion on PTX resistance. miR-4731-5p directly targeted GIGYF1, and upregulating GIGYF1 offset the promoting effect of circPDK1 knockdown on PTX sensitivity. NSCLC tumor growth was inhibited and PTX sensitivity improved when circPDK1 was suppressed. CONCLUSION Depleting circPDK1 promotes PTX sensitivity of NSCLC cells via miR-4731-5p/GIGYF1 axis, thereby inhibiting NSCLC pregnancy.
Collapse
Affiliation(s)
- YunYin Feng
- Department of Respiratory, Kaihua County Traditional Chinese Medicine Hospital, No.10 Zhongshan Road, Qinyang Office, Quzhou City, 324000, Zhejiang Province, China.
| | - TaoLong Zhang
- Department of Gastroenterology, Kaihua County Traditional Chinese Medicine Hospital, Quzhou City, 324300, Zhejiang Province, China
| | - Hong Liu
- Department of Respiratory, Kaihua County Traditional Chinese Medicine Hospital, No.10 Zhongshan Road, Qinyang Office, Quzhou City, 324000, Zhejiang Province, China
| |
Collapse
|
10
|
Zhao YX, Yu CQ, Li LP, Wang DW, Song HF, Wei Y. BJLD-CMI: a predictive circRNA-miRNA interactions model combining multi-angle feature information. Front Genet 2024; 15:1399810. [PMID: 38798699 PMCID: PMC11116695 DOI: 10.3389/fgene.2024.1399810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Increasing research findings suggest that circular RNA (circRNA) exerts a crucial function in the pathogenesis of complex human diseases by binding to miRNA. Identifying their potential interactions is of paramount importance for the diagnosis and treatment of diseases. However, long cycles, small scales, and time-consuming processes characterize previous biological wet experiments. Consequently, the use of an efficient computational model to forecast the interactions between circRNA and miRNA is gradually becoming mainstream. In this study, we present a new prediction model named BJLD-CMI. The model extracts circRNA sequence features and miRNA sequence features by applying Jaccard and Bert's method and organically integrates them to obtain CMI attribute features, and then uses the graph embedding method Line to extract CMI behavioral features based on the known circRNA-miRNA correlation graph information. And then we predict the potential circRNA-miRNA interactions by fusing the multi-angle feature information such as attribute and behavior through Autoencoder in Autoencoder Networks. BJLD-CMI attained 94.95% and 90.69% of the area under the ROC curve on the CMI-9589 and CMI-9905 datasets. When compared with existing models, the results indicate that BJLD-CMI exhibits the best overall competence. During the case study experiment, we conducted a PubMed literature search to confirm that out of the top 10 predicted CMIs, seven pairs did indeed exist. These results suggest that BJLD-CMI is an effective method for predicting interactions between circRNAs and miRNAs. It provides a valuable candidate for biological wet experiments and can reduce the burden of researchers.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- School of information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of information Engineering, Xijing University, Xi’an, China
| | - Li-Ping Li
- School of information Engineering, Xijing University, Xi’an, China
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ürümqi, China
| | - Deng-Wu Wang
- School of information Engineering, Xijing University, Xi’an, China
| | - Hui-Fan Song
- School of information Engineering, Xijing University, Xi’an, China
| | - Yu Wei
- School of information Engineering, Xijing University, Xi’an, China
| |
Collapse
|
11
|
Tang YF, Liu ZH, Zhang LY, Shi SH, Xu S, Ma JA, Hu CH, Zou FW. circ_PPAPDC1A promotes Osimertinib resistance by sponging the miR-30a-3p/ IGF1R pathway in non-small cell lung cancer (NSCLC). Mol Cancer 2024; 23:91. [PMID: 38715012 PMCID: PMC11075361 DOI: 10.1186/s12943-024-01998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Recent evidence has demonstrated that abnormal expression and regulation of circular RNA (circRNAs) are involved in the occurrence and development of a variety of tumors. The aim of this study was to investigate the effects of circ_PPAPDC1A in Osimertinib resistance in NSCLC. METHODS Human circRNAs microarray analysis was conducted to identify differentially expressed (DE) circRNAs in Osimertinib-acquired resistance tissues of NSCLC. The effect of circ_PPAPDC1A on cell proliferation, invasion, migration, and apoptosis was assessed in both in vitro and in vivo. Dual-luciferase reporter assay, RT-qPCR, Western-blot, and rescue assay were employed to confirm the interaction between circ_PPAPDC1A/miR-30a-3p/IGF1R axis. RESULTS The results revealed that circ_PPAPDC1A was significantly upregulated in Osimertinib acquired resistance tissues of NSCLC. circ_PPAPDC1A reduced the sensitivity of PC9 and HCC827 cells to Osimertinib and promoted cell proliferation, invasion, migration, while inhibiting apoptosis in Osimertinib-resistant PC9/OR and HCC829/OR cells, both in vitro and in vivo. Silencing circ_PPAPDC1A partially reversed Osimertinib resistance. Additionally, circ_PPAPDC1A acted as a competing endogenous RNA (ceRNA) by targeting miR-30a-3p, and Insulin-like Growth Factor 1 Receptor (IGF1R) was identified as a functional gene for miR-30a-3p in NSCLC. Furthermore, the results confirmed that circ_PPAPDC1A/miR-30a-3p/IGF1R axis plays a role in activating the PI3K/AKT/mTOR signaling pathway in NSCLC with Osimertinib resistance. CONCLUSIONS Therefore, for the first time we identified that circ_PPAPDC1A was significantly upregulated and exerts an oncogenic role in NSCLC with Osimertinib resistance by sponging miR-30a-3p to active IGF1R/PI3K/AKT/mTOR pathway. circ_PPAPDC1A may serve as a novel diagnostic biomarker and therapeutic target for NSCLC patients with Osimertinib resistance.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Drug Resistance, Neoplasm/genetics
- Acrylamides/pharmacology
- RNA, Circular/genetics
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Aniline Compounds/pharmacology
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Cell Proliferation
- Animals
- Mice
- Signal Transduction
- Apoptosis
- Cell Movement/genetics
- Xenograft Model Antitumor Assays
- Male
- Female
- Indoles
- Pyrimidines
Collapse
Affiliation(s)
- Yi-Fang Tang
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Zheng-Hua Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 11000, Liaoning, P.R. China
| | - Lei-Yi Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Sheng-Hao Shi
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Shun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 11000, Liaoning, P.R. China
| | - Jin-An Ma
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Chun-Hong Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China
| | - Fang-Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, P.R. China.
| |
Collapse
|
12
|
Liang M, Sheng L, Ke Y, Wu Z. The research progress on radiation resistance of cervical cancer. Front Oncol 2024; 14:1380448. [PMID: 38651153 PMCID: PMC11033433 DOI: 10.3389/fonc.2024.1380448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Cervical carcinoma is the most prevalent gynecology malignant tumor and ranks as the fourth most common cancer worldwide, thus posing a significant threat to the lives and health of women. Advanced and early-stage cervical carcinoma patients with high-risk factors require adjuvant treatment following surgery, with radiotherapy being the primary approach. However, the tolerance of cervical cancer to radiotherapy has become a major obstacle in its treatment. Recent studies have demonstrated that radiation resistance in cervical cancer is closely associated with DNA damage repair pathways, the tumor microenvironment, tumor stem cells, hypoxia, cell cycle arrest, and epigenetic mechanisms, among other factors. The development of tumor radiation resistance involves complex interactions between multiple genes, pathways, and mechanisms, wherein each factor interacts through one or more signaling pathways. This paper provides an overview of research progress on an understanding of the mechanism underlying radiation resistance in cervical cancer.
Collapse
Affiliation(s)
| | | | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
13
|
Ouyang K, Xie D, Liao H, He Y, Xiong H. Circ_0001786 facilitates gefitinib resistance and malignant progression in non-small cell lung cancer via miR-34b-5p/SRSF1. J Cardiothorac Surg 2024; 19:178. [PMID: 38581057 PMCID: PMC10996225 DOI: 10.1186/s13019-024-02651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a widespread cancer and gefitinib is a primary therapy for NSCLC patients. Nevertheless, the underlying mechanisms for the progression of acquired drug resistance have not been clarified. The aim of this study was to investigate the role of circular RNA (circ_0001786) in gefitinib-resistant NSCLC. METHODS Firstly, the expression of circ_0001786, miR-34b-5p and SRSF1 were assayed using qRT-PCR. Subsequently, CCK-8 test was utilized to measure the semi-inhibitory concentration (IC50) of cellular gefitinib. Apoptosis was identified by flow cytometry. At last, dual luciferase assay was applied to prove the binding association between miR-34b-5p, circ_0001786 or SRSF1. RESULTS Our research disclosed that circ_0001786 was heightened in gefitinib-resistant NSCLC cells and tissues. Knockdown of circ_0001786 restrained IC50 values of gefitinib, attenuated the clonogenic ability and facilitated apoptosis in HCC827-GR and PC9-GR. In addition, circ_0001786 was a molecular sponge for miR-34b-5p. Silencing miR-34b-5p rescued the inhibitory impact of circ_0001786 knockdown on IC50 and cell cloning ability. Moreover, miR-34b-5p directly targeted SRSF1. Importantly, circ_0001786 enhanced gefitinib tolerance and malignant development in NSCLC through miR-34b-5p/SRSF1 pathway. CONCLUSION This research revealed a novel mechanism by which circ_0001786 enhanced NSCLC resistance to gefitinib by sponging miR-34b-5p and upregulating SRSF1. circ_0001786 was a potential target for improving the treatment of gefitinib-resistant NSCLC patients.
Collapse
Affiliation(s)
- Kaobin Ouyang
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China
| | - Dan Xie
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China
| | - Haojie Liao
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China
| | - Ying He
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China
| | - Hailin Xiong
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China.
| |
Collapse
|
14
|
Jia S, Yu L, Wang L, Peng L. The functional significance of circRNA/miRNA/mRNA interactions as a regulatory network in lung cancer biology. Int J Biochem Cell Biol 2024; 169:106548. [PMID: 38360264 DOI: 10.1016/j.biocel.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Lung cancer, the leading cause of cancer-related deaths, presents significant challenges to patients due to its poor prognosis. Recent research has increasingly implicated circular RNAs in the development and progression of lung cancer. These circular RNAs have been found to impact various aspects of tumor behavior, including proliferation, metastasis, cell cycle regulation, apoptosis, cancer stem cells, therapy response, and the tumor microenvironment. One of the key mechanisms by which circular RNAs exert their influence is through their ability to act as miRNA sponges, sequestering microRNAs and preventing them from targeting other RNA molecules. Accumulating evidence suggests that circular RNAs can function as competing endogenous RNAs, affecting the expression of target mRNAs by sequestering microRNAs. Dysregulation of competing endogenous RNAs networks involving circular RNAs, microRNAs, and mRNAs leads to the aberrant expression of oncogenes and tumor suppressors involved in lung cancer pathogenesis. Understanding the dynamic interplay and molecular mechanisms among circular RNAs, microRNAs, and mRNAs holds great promise for advancing early diagnosis, personalized therapeutic interventions, and improved patient outcomes in lung cancer. Therefore, this study aims to provide an in-depth exploration of the executive roles of circular RNAs/microRNAs/ mRNAs interactions in lung cancer pathogenesis and their potential utility for diagnosing lung cancer, predicting patient prognosis, and guiding targeted therapies. By offering a comprehensive overview of the dysregulation of the axes as driving factors in lung cancer, we aim to pave the way for their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Shengnan Jia
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lihui Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
15
|
Yan J, Chen X, Dong Q, Lin J, Sun X. Analysis of Potential Circular RNAs in Regulating Imatinib Resistance of Gastrointestinal Stromal Tumor. Comb Chem High Throughput Screen 2024; 27:1371-1380. [PMID: 37608665 PMCID: PMC11327759 DOI: 10.2174/1386207326666230822100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Recent studies have found that circular RNA is an abundant RNA species that belongs to part of the competing endogenous RNA network (ceRNA), which was proven to play an important role in the development, diagnosis and progress of diseases. However, the function of circRNAs in imatinib resistance in Gastrointestinal stromal tumor (GIST) are poorly understood so for. The present study aimed to screen and predict the potential circRNAs in imatinib resistance of GIST using microarray analysis. METHODS We determined the expression of circular RNAs in paired normal gastric tissues (N), primary GIST (gastrointestinal stromal tumor) tissues (YC) and imatinib mesylate secondary resistance GIST tissues (C) with microarray and predicted 8677 dysregulated circular RNAs. RESULTS Compared with the YC group, we identified 15 circRNAs that were up-regulated and 8 circRNAs that were down-regulated in the C group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these host linear transcripts that differentially express circular RNAs are involved in many key biological pathways, predicting the potential tumor-genesis and drug resistance mechanismrelated to HIF-1 pathway, later we draw the cirRNA-miRNA-mRNA network involved in the HIF-1 pathway and found several dysregulated circRNAs and the relationship between circRNA-miRNAs-mRNA, such as circRNA_06551, circRNA_14668, circRNA_04497, circRNA_08683, circRNA_09923(Green, down-regulation) and circRNA_23636, circRNA_15734 (Red, up-regulation). CONCLUSION Taken together, we identified a panel of dysregulated circRNAs that may be potential biomarkers even therapy relevant to the GIST, especially imatinib secondary resistance GIST.
Collapse
Affiliation(s)
- Jingyi Yan
- Departments of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaolei Chen
- Departments of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiantong Dong
- Departments of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ji Lin
- Departments of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xuecheng Sun
- Departments of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
16
|
Chen Y, Chen X, Li Z, Zhu Y, Liu F, Cai J. CircDENND2D Inhibits PD-L1-Mediated Non-Small Cell Lung Cancer Metastasis and Immune Escape by Regulating miR-130b-3p/STK11 Axis. Biochem Genet 2023; 61:2691-2709. [PMID: 37222962 DOI: 10.1007/s10528-023-10401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
Local recurrence and distant metastasis of non-small cell lung cancer (NSCLC) caused by immune escape is one of the root causes of treatment difficulties. We aim to investigate the mechanism of immune escape in NSCLC. NSCLC tissues were collected. Cell proliferation was detected by CCK-8 assay. Cell migration and invasion ability was measured by Transwell assay. The expressions of E-cadherin, N-cadherin and PD-L1 were detected by Western blot. NSCLC cells were co-cultured with CD8+ T cells to simulate tumor microenvironment in vitro. The proportion of CD8+ T cells and apoptosis were detected by flow cytometry. Dual-luciferase reporter gene assay confirmed the targeting relationship of circDENND2D and STK11. The expressions of circDENND2D and STK1 were down-regulated, while miR-130b-3p expression was up-regulated in NSCLC tissues. Overexpression of circDENND2D or STK11 inhibited NSCLC cells proliferation, migration and invasion, and attenuated the immune escape of NSCLC cells. CircDENND2D targeted miR-130b-3p to competitively promote STK11 expression. STK11 knockdown or miR-130b-3p overexpression attenuated the function of circDENND2D overexpression on NSCLC cells. CircDENND2D inhibited metastasis and immune escape of NSCLC by regulating miR-130b-3p/STK11 axis.
Collapse
Affiliation(s)
- Yongxing Chen
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Xianshan Chen
- Department of Thoracic Surgery, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Zhao Li
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Yike Zhu
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Fujin Liu
- Department of Pathology, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Junhong Cai
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China.
| |
Collapse
|
17
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
18
|
Qu R, Ma J. Circ_0091537 promotes gefitinib chemoresistance in non-small cell lung cancer by mediating the miR-520h/YAP1 network. Anticancer Drugs 2023; 34:1151-1161. [PMID: 36727737 DOI: 10.1097/cad.0000000000001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemoresistance is the leading cause of poor outcomes of non-small cell lung cancer (NSCLC). Circular RNA (circRNA) plays a vital role in NSCLC resistance progression. Our study aimed to uncover the role of circRNA PDZ domain containing 8 (circ_0091537) in NSCLC with gefitinib resistance. The expression of circ_0091537, microRNA-520h (miR-520h), and Yes-associated protein 1 (YAP1) mRNA were detected using quantitative real-time PCR. Cell viability and cell proliferation were assessed by MTT assay and colony formation assay. Colony formation ability was detected by colony formation assay. Cell cycle distribution and cell apoptosis were determined by flow cytometry assay. Cell migration and cell invasion were detected by transwell assay. The potential relationship between miR-520h and circ_0091537 or YAP1 was verified by dual-luciferase reporter assay. Tumor formation assay in nude mice was performed to test the role of circ_0091537 in vivo . Circ_0091537 and YAP1 were upregulated, while miR-520h was downregulated in gefitinib-resistant NSCLC cells. Circ_0091537 knockdown inhibited gefitinib resistance in NSCLC cells and then inhibited NSCLC cell growth, migration, and invasion. MiR-520h was a target of circ_0091537, and miR-520h inhibition reversed the effects of circ_0091537 knockdown. Moreover, YAP1 was a target of miR-520h, and circ_0091537 competitively combined with miR-520h to enrich YAP1 expression. MiR-520h restoration impaired gefitinib resistance and suppressed NSCLC cell proliferation, migration, and invasion by repressing YAP1. Circ_0091537 overexpression weakened gefitinib sensitivity in vivo to promote tumor growth. Circ_0091537 strengthens gefitinib chemoresistance to promote NSCLC progression by mediating the miR-520h/YAP1 network, suggesting that circ_0091537 may be a key indicator in resistance to treatment of NSCLC.
Collapse
Affiliation(s)
- Richu Qu
- Department of Thoracic Surgery, Jilin Provincial People's Hospital, Chaoyang, Changchun, Jilin, China
| | | |
Collapse
|
19
|
Liu D, Lu X, Huang W, Zhuang W. Long non-coding RNAs in non-small cell lung cancer: implications for EGFR-TKI resistance. Front Genet 2023; 14:1222059. [PMID: 37456663 PMCID: PMC10349551 DOI: 10.3389/fgene.2023.1222059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common types of malignant tumors as well as the leading cause of cancer-related deaths in the world. The application of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has dramatically improved the prognosis of NSCLC patients who harbor EGFR mutations. However, despite an excellent initial response, NSCLC inevitably becomes resistant to EGFR-TKIs, leading to irreversible disease progression. Hence, it is of great significance to shed light on the molecular mechanisms underlying the EGFR-TKI resistance in NSCLC. Long non-coding RNAs (lncRNAs) are critical gene modulators that are able to act as oncogenes or tumor suppressors that modulate tumorigenesis, invasion, and metastasis. Recently, extensive evidence demonstrates that lncRNAs also have a significant function in modulating EGFR-TKI resistance in NSCLC. In this review, we present a comprehensive summary of the lncRNAs involved in EGFR-TKI resistance in NSCLC and focus on their detailed mechanisms of action, including activation of alternative bypass signaling pathways, phenotypic transformation, intercellular communication in the tumor microenvironment, competing endogenous RNAs (ceRNAs) networks, and epigenetic modifications. In addition, we briefly discuss the limitations and the clinical implications of current lncRNAs research in this field.
Collapse
Affiliation(s)
- Detian Liu
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolin Lu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wentao Huang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Sun C, Guan H, Li J, Gu Y. circ_0000376 knockdown suppresses non-small cell lung cancer cell tumor properties by the miR-545-3p/PDPK1 pathway. Open Med (Wars) 2023; 18:20230641. [PMID: 36820067 PMCID: PMC9938644 DOI: 10.1515/med-2023-0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 02/18/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 80% of total lung cancers, which are the main killer of cancer-related death worldwide. Circular RNA (circRNA) has been found to modulate NSCLC development. However, the role of circ_0000376 in NSCLC development has been underreported. The present work showed that circ_0000376 and 3-phos-phoinositide-dependent protein kinase-1 (PDPK1) expression were dramatically increased, but miR-545-3p was decreased in NSCLC tissues and cells. circ_0000376 expression was closely associated with lymph node metastasis, tumor-node-metastasis stage, and tumor size of NSCLC patients. circ_0000376 knockdown repressed NSCLC cell proliferation, migration, invasion, and glutaminolysis but induced cell apoptosis. Additionally, miR-545-3p bound to circ_0000376, and circ_0000376 regulated cell phenotypes by associating with miR-545-3p. MiR-545-3p also participated in NSCLC cell proliferation, migration, invasion, apoptosis, and glutaminolysis by targeting PDPK1. Further, circ_0000376 absence repressed tumor formation in vivo. Collectively, circ_0000376 regulated NSCLC cell tumor properties by the miR-545-3p/PDPK1 axis, suggesting that circ_0000376 could be employed as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Changpeng Sun
- Department of Cardiothoracic Surgery, Jianhu Clinical Medical College of Yangzhou University, No. 666, Nanhuan Road, Jinhu Town, Jianhu, Yancheng City, Jiangsu Province, 224700, PR China
| | - Hongjun Guan
- Department of Cardiothoracic Surgery, Jianhu Clinical Medical College of Yangzhou University, Yancheng City, Jiangsu Province, 224700, PR China
| | - Jinjin Li
- Department of Cardiothoracic Surgery, Jianhu Clinical Medical College of Yangzhou University, Yancheng City, Jiangsu Province, 224700, PR China
| | - Yinfeng Gu
- Department of Cardiothoracic Surgery, Jianhu Clinical Medical College of Yangzhou University, Yancheng City, Jiangsu Province, 224700, PR China
| |
Collapse
|
21
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
22
|
Zou J, Lan H, Li W, Xie S, Tong Z, Song X, Wang C. Comprehensive Analysis of Circular RNA Expression Profiles in Gefitinib-Resistant Lung Adenocarcinoma Patients. Technol Cancer Res Treat 2022; 21:15330338221139167. [PMID: 36537128 PMCID: PMC9772949 DOI: 10.1177/15330338221139167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Gefitinib is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) widely used in lung adenocarcinoma (LUAD) patients harboring sensitive EGFR mutations. Although it has a good initial efficacy, acquired resistance to gefitinib is eventually inevitable. Studies have shown that circular RNA (circRNA) is involved in the development of acquired resistance to different anti-cancer drugs, but the comprehensive analysis of its expression profile and functions on acquired gefitinib resistance remains poor. Methods: To explore the aberrant circRNAs expression profiles, we collected peripheral plasma samples from 4 gefitinib-sensitive and 4 gefitinib-resistant patients for performing microarray analysis. Candidates of differentially expressed circRNAs were used and analyzed by bioinformatics modalities including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and a constructed circRNA-microRNA RNA network. The differential expression of selected circRNAs was verified by quantitative real-time PCR (qRT-PCR). Results: A total of 2571 circRNAs with significantly different expression between the groups were identified by microarray analysis. GO, KEGG, and pathway enrichment analyses reveal that these differentially expressed circRNAs (DECs) were complicated in many biological pathways that may be related to EGFR-TKI resistance such as ABC transporter and PI3K-Akt pathways. A circRNA-microRNA network was constructed by 10 circRNAs potentially involved in EGFR-TKI resistance togethering with their corresponding microRNAs (miRNAs). Consistent with the results of microarray assay, hsa_circ_0030591 and hsa_circ_0040348 were validated to be upregulated in gefitinib-resistant patients by qRT-PCR. Conclusions: Our study provides valuable data on circRNAs expression profiles detected in liquid biopsy for LUAD patients with acquired gefitinib resistance, and we validate that upregulations of hsa_circ_0030591 and hsa_circ_0040348 may play key roles in EGFR-TKI resistance and thus serving as candidates for biomarker.
Collapse
Affiliation(s)
- Junyong Zou
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China,Department of Respiratory Medicine, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Huiyin Lan
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Wei Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongkai Tong
- Department of Respiratory Medicine, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China,Changhui Wang, Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
Xiaolian Song, Changhui Wang, Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
23
|
Wang F, Yu C, Chen L, Xu S. Landscape of circular RNAs in different types of lung cancer and an emerging role in therapeutic resistance (Review). Int J Oncol 2022; 62:21. [PMID: 36562354 PMCID: PMC9812256 DOI: 10.3892/ijo.2022.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is one of the most common malignant tumor types and the leading cause of cancer‑associated death worldwide. Different types of lung cancer exhibit differences in terms of pathophysiology and pathogenesis, and also treatment and prognosis. Accumulating evidence has indicated that circular RNAs (circRNAs) are abnormally expressed among different types of lung cancer and confer important biological functions in progression and prognosis. However, studies comparing different circRNAs in lung cancer subtypes are scarce. Furthermore, circRNAs have an important role in drug resistance and are related to clinicopathological features in lung cancer. Summaries of the association of circRNAs with drug resistance are also scarce in the literature. The present study outlined the biological functions of circRNAs and focused on discriminating differential circRNA patterns and mechanisms in three different types of lung cancer. The emerging roles of circRNAs in the resistance to chemotherapy, targeted therapy, radiotherapy and immunotherapy were also highlighted. Understanding these aspects of circRNAs sheds light on novel physiological and pathophysiological processes of lung cancer and suggests the application of circRNAs as biomarkers for diagnosis and prognosis, as well as therapeutic resistance.
Collapse
Affiliation(s)
- Fan Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Chuting Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Ling Chen
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China,Correspondence to: Dr Ling Chen, Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China,Professor Sheng Xu, National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| |
Collapse
|
24
|
Sufianov A, Begliarzade S, Beilerli A, Liang Y, Ilyasova T, Beylerli O. Circular RNAs as biomarkers for lung cancer. Noncoding RNA Res 2022; 8:83-88. [DOI: 10.1016/j.ncrna.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
|
25
|
Ren W, Yuan Y, Peng J, Mutti L, Jiang X. The function and clinical implication of circular RNAs in lung cancer. Front Oncol 2022; 12:862602. [PMID: 36338714 PMCID: PMC9629004 DOI: 10.3389/fonc.2022.862602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs are covalently close, endogenous RNAs without 5' end caps or 3'poly (A) tails and have been characterized by high stability, abundance, and conservation as well as display cell/tissue/developmental stage-specific expressions. Numerous studies have confirmed that circRNAs act as microRNA (miRNA) sponges, RNA-binding protein, and transcriptional regulators; some circRNAs even act as translation templates that participate in multiple pathophysiological processes. Growing evidence have confirmed that circRNAs are involved in the pathogenesis of lung cancers through the regulation of proliferation and invasion, cell cycle, autophagy, apoptosis, stemness, tumor microenvironment, and chemotherapy resistance. Moreover, circRNAs have emerged as potential biomarkers for lung cancer diagnosis and prognosis and targets for developing new treatments. In this review, we will summarize recent progresses in identifying the biogenesis, biological functions, potential mechanisms, and clinical applications of these molecules for lung cancer diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Luciano Mutti
- The Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Yan T, Tian X, Liu F, Liu Q, Sheng Q, Wu J, Jiang S. The emerging role of circular RNAs in drug resistance of non-small cell lung cancer. Front Oncol 2022; 12:1003230. [PMID: 36303840 PMCID: PMC9592927 DOI: 10.3389/fonc.2022.1003230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the characteristics of aggressiveness and high risk of postoperative recurrence, non-small cell lung cancer (NSCLC) is a serious hazard to human health, accounting for 85% of all lung cancer cases. Drug therapies, including chemotherapy, targeted therapy and immunotherapy, are effective treatments for NSCLC in clinics. However, most patients ultimately develop drug resistance, which is also the leading cause of treatment failure in cancer. To date, the mechanisms of drug resistance have yet to be fully elucidated, thus original strategies are developed to overcome this issue. Emerging studies have illustrated that circular RNAs (circRNAs) participate in the generation of therapeutic resistance in NSCLC. CircRNAs mediate the modulations of immune cells, cytokines, autophagy, ferroptosis and metabolism in the tumor microenvironment (TME), which play essential roles in the generation of drug resistance of NSCLC. More importantly, circRNAs function as miRNAs sponges to affect specific signaling pathways, directly leading to the generation of drug resistance. Consequently, this review highlights the mechanisms underlying the relationship between circRNAs and drug resistance in NSCLC. Additionally, several therapeutic drugs associated with circRNAs are summarized, aiming to provide references for circRNAs serving as potential therapeutic targets in overcoming drug resistance in NSCLC.
Collapse
Affiliation(s)
- Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qing Sheng
- School of Architecture and Fine Art, Dalian University of Technology, Dalian, China
| | - Jianlin Wu
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Jianlin Wu, ; Shulong Jiang,
| |
Collapse
|
27
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
28
|
Li J, Li P, Shao J, Liang S, Wan Y, Zhang Q, Li C, Li Y, Wang C. Emerging Role of Noncoding RNAs in EGFR TKI-Resistant Lung Cancer. Cancers (Basel) 2022; 14:cancers14184423. [PMID: 36139582 PMCID: PMC9496789 DOI: 10.3390/cancers14184423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer accounts for the majority of malignancy-related mortalities worldwide. The introduction of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and significantly improved the overall survival (OS) of lung cancer. Nevertheless, almost all EGFR-mutant patients invariably acquire TKI resistance. Accumulating evidence has indicated that noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have a central role in the tumorigenesis and progression of lung cancer by regulating crucial signaling pathways, providing a new approach for exploring the underlying mechanisms of EGFR-TKI resistance. Therefore, this review comprehensively describes the dysregulation of ncRNAs in EGFR TKI-resistant lung cancer and its underlying mechanisms. We also underscore the clinical application of ncRNAs as prognostic, predictive and therapeutic biomarkers for EGFR TKI-resistant lung cancer. Furthermore, the barriers that need to be overcome to translate the basic findings of ncRNAs into clinical practice are discussed.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peiyi Li
- Department of Anesthesiology, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shufan Liang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuntian Wan
- West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiran Zhang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changshu Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.L.); (C.W.)
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.L.); (C.W.)
| |
Collapse
|
29
|
Atiya A, Alhumaydhi FA, Sharaf SE, Al Abdulmonem W, Elasbali AM, Al Enazi MM, Shamsi A, Jawaid T, Alghamdi BS, Hashem AM, Ashraf GM, Shahwan M. Identification of 11-Hydroxytephrosin and Torosaflavone A as Potential Inhibitors of 3-Phosphoinositide-Dependent Protein Kinase 1 (PDPK1): Toward Anticancer Drug Discovery. BIOLOGY 2022; 11:1230. [PMID: 36009858 PMCID: PMC9405294 DOI: 10.3390/biology11081230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The 3-phosphoinositide-dependent protein kinase 1 (PDPK1) has a significant role in cancer progression and metastasis as well as other inflammatory disorders, and has been proposed as a promising therapeutic target for several malignancies. In this work, we conducted a systematic virtual screening of natural compounds from the IMPPAT database to identify possible PDPK1 inhibitors. Primarily, the Lipinski rules, ADMET, and PAINS filter were applied and then the binding affinities, docking scores, and selectivity were carried out to find effective hits against PDPK1. Finally, we identified two natural compounds, 11-Hydroxytephrosin and Torosaflavone A, bearing substantial affinity with PDPK1. Both compounds showed drug-likeness as predicted by the ADMET analysis and their physicochemical parameters. These compounds preferentially bind to the ATP-binding pocket of PDPK1 and interact with functionally significant residues. The conformational dynamics and complex stability of PDPK1 with the selected compounds were then studied using interaction analysis and molecular dynamics (MD) simulations for 100 ns. The simulation results revealed that PDPK1 forms stable docked complexes with the elucidated compounds. The findings show that the newly discovered 11-Hydroxytephrosin and Torosaflavone A bind to PDPK1 in an ATP-competitive manner, suggesting that they could one day be used as therapeutic scaffolds against PDPK1-associated diseases including cancer.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy Umm Al-Qura University, Makkah 21961, Saudi Arabia
- Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in the Holy Capital, Makkah 21955, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Maher M. Al Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdelaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
30
|
Jiang F, Chen X, Shen Y, Shen X. Identification and Validation of an m6A Modification of JAK-STAT Signaling Pathway–Related Prognostic Prediction Model in Gastric Cancer. Front Genet 2022; 13:891744. [PMID: 35928449 PMCID: PMC9343854 DOI: 10.3389/fgene.2022.891744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Gastric cancer (GC) is one of the malignant tumors worldwide. Janus (JAK)–signal transduction and activator of transcription (STAT) signaling pathway is involved in cellular biological process and immune function. However, the association between them is still not systematically described. Therefore, in this study, we aimed to identify key genes involved in JAK-STAT signaling pathway and GC, as well as the potential mechanism. Methods: The Cancer Genome Atlas (TCGA) database was the source of RNA-sequencing data of GC patients. Gene Expression Omnibus (GEO) database was used as the validation set. The predictive value of the JAK-STAT signaling pathway-related prognostic prediction model was examined using least absolute shrinkage and selection operator (LASSO); survival, univariate, and multivariate Cox regression analyses; and receiver operating characteristic curve (ROC) analyses to examine the predictive value of the model. Quantitative real-time polymerase chain reaction (qRT-PCR) and chi-square test were used to verify the expression of genes in the model and assess the association between the genes and clinicopathological parameters of GC patients, respectively. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis, version 3.0 (GSEA), sequence-based RNA adenosine methylation site predictor (SRAMP) online websites, and RNA immunoprecipitation (RIP) experiments were used to predict the model-related potential pathways, m6A modifications, and the association between model genes and m6A. Results: A four-gene prognostic model (GHR, PIM1, IFNA8, and IFNB1) was constructed, namely, riskScore. The Kaplan–Meier curves suggested that patients with high riskScore expression had a poorer prognosis than those with low riskScore expression (p = 0.006). Multivariate Cox regression analyses showed that the model could be an independent predictor (p < 0.001; HR = 3.342, 95%, CI = 1.834–6.088). The 5-year area under time-dependent ROC curve (AUC) reached 0.655. The training test set verified these results. Further analyses unveiled an enrichment of cancer-related pathways, m6A modifications, and the direct interaction between m6A and the four genes. Conclusion: This four-gene prognostic model could be applied to predict the prognosis of GC patients and might be a promising therapeutic target in GC.
Collapse
Affiliation(s)
- Fei Jiang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, Nanjing Public Health College, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, Nanjing Public Health College, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yan Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, Nanjing Public Health College, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, Nanjing Public Health College, Southeast University, Nanjing, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Department of Occupational and Environmental Health, School of Public Health, Southeast University, Nanjing, China
- *Correspondence: Xiaobing Shen,
| |
Collapse
|
31
|
Dai C, Ma Z, Si J, An G, Zhang W, Li S, Ma Y. Hsa_circ_0007312 Promotes Third-Generation Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance through Pyroptosis and Apoptosis via the MiR-764/MAPK1 Axis in Lung Adenocarcinoma Cells. J Cancer 2022; 13:2798-2809. [PMID: 35812182 PMCID: PMC9254875 DOI: 10.7150/jca.72066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Purposes: Osimertinib is a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) used for patients with gefitinib (first-generation EGFR-TKI) resistance, but osimertinib resistance inevitably occurs. Therefore, it is necessary to explore the mechanisms of osimertinib resistance. Materials and Methods: We performed quantitative real-time polymerase chain reaction to detect hsa_circ_0007312 (circ7312), miR-764, and MAPK1 expressions in tissues and cells. Western blotting was used to detect protein levels in cells. Cell Counting Kit-8, apoptotic, and Transwell assays were used to explore biological functions. Luciferase assays were used to identify the interactions between circ7312 and miR-764, MAPK1 and miR-764. A xenograft experiment was performed to clarify the role of circ7312 in vivo. Public datasets were used to identify the relation between circ7312 expression and the cell half maximal inhibitory concentration value of osimertinib in 41 lung adenocarcinoma cell lines. The Student t-test, Kaplan-Meier analysis, and Pearson correlation analysis were used in data analysis. Results: We found that circ7312 knockdown increased miR-764 expression and decreased MAPK1 expression, and circ7312 regulated MAPK1 by sponging miR-764. In addition, high circ7312 expression has significant positive correlation with osimertinib IC50 values, circ7312 knockdown decreased the cell half maximal inhibitory concentration value of osimertinib and increased pyroptosis and apoptosis by sponging the miR-764/MAPK1 axis. We also found that circ7312 and MAPK1 were highly expressed in tumor tissues and related to poor prognosis. Xenograft experiments revealed that circ7312 knockdown decreased osimertinib resistance in vivo. Conclusion: We demonstrated that the inhibition of circ7312 decreased osimertinib resistance by promoting pyroptosis and apoptosis via the miR-764/MAPK1 axis, providing a novel target for osimertinib resistance therapy.
Collapse
Affiliation(s)
- Chenyue Dai
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zeming Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiahui Si
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Guo An
- Department of Laboratory Animals, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Wenlong Zhang
- Department of Laboratory Animals, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shaolei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
32
|
Circ-MAN1A2 Contributes to the Acquired Resistance of Gefitinib by Binding to miR-409-3p to Induce TWIST1 Expression in Non-small-cell Lung Cancer. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Sang C, Rao D, Wu C, Xia Y, Si M, Tang Z. Role of circular RNAs in the diagnosis, regulation of drug resistance and prognosis of lung cancer (Review). Oncol Lett 2022; 24:302. [PMID: 35949591 PMCID: PMC9353231 DOI: 10.3892/ol.2022.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors in China and is the highest cause of mortality among male and female patients, both in urban and rural areas. A subset of patients with lung cancer only display chest tightness without any other obvious symptoms. This is because most symptoms do not manifest during the early stages of disease development. Consequently, most patients with lung cancer are diagnosed when the disease is in the advanced stages, when they are already unfit for surgical treatment. Furthermore, the prognosis of patients with lung cancer is poor. The 5-year survival rate of patients with stage IA lung cancer is 85%, compared with 6% in those with stage IV. This requires the development of strategies for early diagnosis, treatment and prognosis to improve the management of lung cancer. Circular RNAs (circRNAs) belong to a class of closed circular non-coding RNAs formed by reverse splicing of a precursor mRNA. These RNAs are highly stable, ubiquitously expressed, conserved, and show high specificity. CircRNAs regulate biological processes, such as the proliferation, differentiation and invasion of lung cancer cells. Therefore, they can be used as biomarkers for the early diagnosis and prognosis prediction of lung cancer, as well as novel targets for therapy design. In the present review, the biological characteristics and functions of circRNAs, as well as their application in the diagnosis, control of drug resistance and effect on the prognosis of patients with lung cancer, will be discussed.
Collapse
Affiliation(s)
- Chengpeng Sang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Dingyu Rao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Caixia Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yao Xia
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Maoyan Si
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhixian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
34
|
Abuduwaili K, Zhu X, Shen Y, Lu S, Liu C. circ_0008797 attenuates non-small cell lung cancer proliferation, metastasis, and aerobic glycolysis by sponging miR-301a-3p/SOCS2. ENVIRONMENTAL TOXICOLOGY 2022; 37:1697-1710. [PMID: 35305058 DOI: 10.1002/tox.23518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE This paper firstly reported the exact function of circ_0008797 on non-small cell lung cancer (NSCLC) progression. METHODS NSCLC tissues/matched normal tissues were harvested from 88 NSCLC patients. RNA fluorescence in situ hybridization experiment was applied to detect circ_0008797 localization in NSCLC cells. circ_0008797 effect on NSCLC cells proliferation, migration, invasion, glucolysis, and apoptosis was researched by cell counting kit-8 assay, 5-ethynyl-2'deoxyuridine assay, Transwell experiment, glycolysis assay, and TUNEL assay. Dual luciferase reporter gene assay, RNA pull-down assay and RNA immunoprecipitation assay were used to verify the binding relationship between two genes. In vivo tumorigenesis and lung metastasis was performed using nude mice. Quantitative reverse transcription-polymerase chain reaction, immunohistochemistry and western blot were applied for genes expression detection. Hematoxylin and eosin staining was performed on lung tissues. RESULTS circ_0008797 was low expressed in NSCLC tissues and cell lines, associating with poor outcome (p <.05). circ_0008797 was mainly expressed in NSCLC cells cytoplasm. circ_0008797 inhibited proliferation, migration, invasion, and glycolysis, but enhanced apoptosis of NSCLC cells (p <.05). circ_0008797 attenuated malignant phenotype of NSCLC cells by sponging miR-301a-3p. circ_0008797 facilitated SOCS2 expression by sponging miR-301a-3p. SOCS2 knockdown partially reversed the inhibitory effect of miR-301a-3p inhibition on NSCLC cells malignant phenotype (p <.05). circ_0008797 attenuated NSCLC prolifearion and metastasis in vivo (p <.05). CONCLUSION circ_0008797 attenuates NSCLC proliferation, metastasis and aerobic glycolysis by sponging miR-301a-3p/SOCS2.
Collapse
Affiliation(s)
- Kahaerjiang Abuduwaili
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Yanli Shen
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Suqiong Lu
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| | - Chunling Liu
- Department of Pulmonary Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China
| |
Collapse
|
35
|
Lai X, Song Y, Tian J. CircCDK14 ameliorates interleukin-1β-induced chondrocyte damage by the miR-1183/KLF5 pathway in osteoarthritis. Autoimmunity 2022; 55:408-417. [PMID: 35723551 DOI: 10.1080/08916934.2022.2081843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND The pathogenesis of osteoarthritis (OA), an endemic and debilitating disease, remains unclear. The study aimed to reveal the role of circular RNA cyclin dependent kinase 14 (circCDK14) in OA development and the underlying mechanism. METHODS Human chondrocytes were stimulated by 10 ng/mL interleukin-1β (IL-1β) to mimic OA cell model. The RNA expression of circCDK14, microRNA-1183 (miR-1183) and kruppel like factor 5 (KLF5) was checked through quantitative real-time polymerase chain reaction. Western blot was employed to detect protein expression. Cell viability, proliferation and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine and flow cytometry analysis, respectively. Starbase online database was performed to identify the interaction between miR-1183 and circCDK14 or KLF5. Exosomes were isolated by differential centrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. RESULTS CircCDK14 and KLF5 expression were significantly decreased, while miR-1183 was increased in OA cartilage tissues and IL-1β-treated chondrocytes in comparison with controls. CircCDK14 overexpression attenuated the inhibitory effect of IL-1β treatment on cell proliferation and the promoting effects on cell apoptosis and extracellular matrix degradation. Additionally, miR-1183 was targeted by circCDK14, and miR-1183 mimics reversed circCDK14-mediated actions in IL-1β-treated chondrocytes. The knockdown of KLF5, a target mRNA of miR-1183, also rescued the effects of miR-1183 inhibitors in IL-1β-induced chondrocytes. Moreover, circCDK14 could induce KLF5 expression by interacting with miR-1183. Further, exosomal circCDK14 had a high diagnostic value in OA. CONCLUSION CircCDK14 reintroduction assuaged IL-1β-caused chondrocyte damage by the miR-1183/KLF5 pathway, providing a diagnostic biomarker for OA.
Collapse
Affiliation(s)
- Xiaowei Lai
- Department of Rheumatology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, China
| | - Yali Song
- Department of Rheumatology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, China
| | - Jimei Tian
- Department of Rheumatology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi City, China
| |
Collapse
|
36
|
Kang Y, You J, Gan Y, Chen Q, Huang C, Chen F, Xu X, Chen L. Serum and Serum Exosomal CircRNAs hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 as Diagnostic Biomarkers for Lung Adenocarcinoma. Front Oncol 2022; 12:912246. [PMID: 35747792 PMCID: PMC9209657 DOI: 10.3389/fonc.2022.912246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
BackgroundCircular RNAs (circRNAs) play an important role in tumorigenesis and several circulating circRNA signatures are closely associated with tumor diagnosis. However, the expression and clinical significance of the two forms of circulating circRNAs, serum and serum exosomal, in patients with lung adenocarcinoma (LUAD), have not been characterized.MethodsThree differentially expressed exosomal circRNAs, hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896, were selected based on previous exosomal circRNA sequencing data analyses of LUAD patients. The expression of these circRNAs in serum and serum-derived exosomes of LUAD patients was assessed using quantitative real-time PCR (qRT-PCR), and correlations between circRNA expression and clinicopathological characteristics were analyzed. The reliability of serum and serum exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 to diagnose LUAD was evaluated using receiver operating characteristic (ROC) analysis.ResultsExpression of serum and serum exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 were significantly higher in LUAD patients than in healthy donors, and significantly lower after surgery. These three serum exosomal circRNAs were also associated with a higher cancer stage. Exosomal hsa_circ_0001492 expression was positively correlated with carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) levels. An association between the expression of the three serum circRNAs and clinical characteristics was not observed. In addition, the three serum exosomal circRNAs had higher diagnostic sensitivity and specificity than the serum circRNAs, and the area under the curve (AUC) of all three serum exosomal circRNAs was >0.75. The combination of exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 had better diagnostic sensitivity and specificity than that of a single marker, with an AUC value of 0.805.ConclusionsThe serum and serum exosomal circRNAs, hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896, were upregulated in LUAD patients. Serum exosomal circRNAs may serve as more effective biomarkers than serum circRNAs for LUAD diagnosis and may further aid the detection of this disease.
Collapse
Affiliation(s)
- Yanli Kang
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yuhan Gan
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qianshun Chen
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chen Huang
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| | - Xunyu Xu
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| | - Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| |
Collapse
|
37
|
Wang S, Qian L, Cao T, Xu L, Jin Y, Hu H, Fu Q, Li Q, Wang Y, Wang J, Xia Y, Huang X. Advances in the Study of CircRNAs in Tumor Drug Resistance. Front Oncol 2022; 12:868363. [PMID: 35615158 PMCID: PMC9125088 DOI: 10.3389/fonc.2022.868363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that circRNAs can affect tumor DNA damage and repair, apoptosis, proliferation, and invasion and influence the transport of intratumor substances by acting as miRNA sponges and transcriptional regulators and binding to proteins in a variety of ways. However, research on the role of circRNAs in cancer radiotherapy and chemoresistance is still in its early stages. Chemotherapy is a common approach to oncology treatment, but the development of tumor resistance limits the overall clinical efficacy of chemotherapy for cancer patients. The current study suggests that circRNAs have a facilitative or inhibitory effect on the development of resistance to conventional chemotherapy in a variety of tumors, suggesting that circRNAs may serve as a new direction for the study of antitumor drug resistance. In this review, we will briefly discuss the biological features of circRNAs and summarize the recent progression of the involvement of circRNAs in the development and pathogenesis of cancer chemoresistance.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Long Qian
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Tingting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Li Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Yan Jin
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Hao Hu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qingsheng Fu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qian Li
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Ye Wang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jiawei Wang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Yabin Xia
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Xiaoxu Huang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
- *Correspondence: Xiaoxu Huang,
| |
Collapse
|
38
|
Circular RNA sterile alpha motif domain containing 4A contributes to cell 5-fluorouracil resistance in colorectal cancer by regulating the miR-545-3p/6-phosphofructo-2-kinase/fructose-2,6-bisphosphataseisotype 3 axis. Anticancer Drugs 2022; 33:553-563. [PMID: 35276696 DOI: 10.1097/cad.0000000000001285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most fatal cancers in the world. Circular RNA sterile alpha motif domain containing 4A (circSAMD4A) was found to be highly expressed in CRC and promoted the tumorigenesis of CRC. However, the role of circSAMD4A in 5-fluorouracil (5-Fu) resistance of CRC is yet to be clarified. This study is designed to investigate the function of circSAMD4A in 5-Fu resistance of CRC and its potential molecular mechanism. Quantitative real-time PCR was used to detect the expression levels of circSAMD4A, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isotype 3 (PFKFB3) mRNA, and miR-545-3p, and western blot was used to detect the protein expression. For functional analysis, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, colony formation/5-ethynyl-2'-deoxyuridine assay, flow cytometry analysis, and glycolysis metabolism analysis were used to assess the capacities of cell viability, proliferation, apoptosis, and glycolysis in 5-Fu-resistant cells of CRC. The dual-luciferase reporter assay was used to verify the interaction between miR-545-3p and circSAMD4A or PFKFB3. Xenograft tumor model was established to confirm the biological role of circSAMD4A in 5-Fu resistance of CRC in vivo. CircSAMD4A was upregulated in 5-Fu-resistant CRC tissues and cells. Functionally, circSAMD4A knockdown inhibited the proliferation and glycolysis mechanism but promoted apoptosis in 5-Fu-resistant cells of CRC. CircSAMD4A was identified as a molecular sponge of miR-545-3p to upregulate PFKFB3 expression. Mechanistically, circSAMD4A knockdown-induced 5-Fu sensitivity was mediated by miR-545-3p/PFKFB3 axis. Moreover, circSAMD4A knockdown improved 5-Fu sensitivity of CRC in vivo. CircSAMD4A contributed to 5-Fu resistance of CRC cells partly through upregulating PFKFB3 expression by sponging miR-545-3p, providing a possible circRNA-targeted therapy for CRC.
Collapse
|
39
|
Liu Y, Ao X, Yu W, Zhang Y, Wang J. Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:50-72. [PMID: 34938606 PMCID: PMC8645422 DOI: 10.1016/j.omtn.2021.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, with high morbidity and mortality. Non-small cell lung cancer (NSCLC) is a major pathological type of LC and accounts for more than 80% of all cases. Circular RNAs (circRNAs) are a large class of non-coding RNAs (ncRNAs) with covalently closed-loop structures, a high abundance, and tissue-specific expression patterns. They participate in various pathophysiological processes by regulating complex gene networks involved in proliferation, apoptosis, migration, and epithelial-to-mesenchymal transition (EMT), as well as metastasis. A growing number of studies have revealed that the dysregulation of circRNAs contributes to many aspects of cancer progression, such as its occurrence, metastasis, and recurrence, suggesting their great potential as efficient and specific biomarkers in the diagnosis, prognosis, and therapeutic targeting of NSCLC. In this review, we systematically elucidate the characteristics, biogenesis, and functions of circRNAs and focus on their molecular mechanisms in NSCLC progression. Moreover, we highlight their clinical implications in NSCLC treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China.,School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wanpeng Yu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
40
|
Kolesar J, Peh S, Thomas L, Baburaj G, Mukherjee N, Kantamneni R, Lewis S, Pai A, Udupa KS, Kumar An N, Rangnekar VM, Rao M. Integration of liquid biopsy and pharmacogenomics for precision therapy of EGFR mutant and resistant lung cancers. Mol Cancer 2022; 21:61. [PMID: 35209919 PMCID: PMC8867675 DOI: 10.1186/s12943-022-01534-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The advent of molecular profiling has revolutionized the treatment of lung cancer by comprehensively delineating the genomic landscape of the epidermal growth factor receptor (EGFR) gene. Drug resistance caused by EGFR mutations and genetic polymorphisms of drug metabolizing enzymes and transporters impedes effective treatment of EGFR mutant and resistant lung cancer. This review appraises current literature, opportunities, and challenges associated with liquid biopsy and pharmacogenomic (PGx) testing as precision therapy tools in the management of EGFR mutant and resistant lung cancers. Liquid biopsy could play a potential role in selection of precise tyrosine kinase inhibitor (TKI) therapies during different phases of lung cancer treatment. This selection will be based on the driver EGFR mutational status, as well as monitoring the development of potential EGFR mutations arising during or after TKIs treatment, since some of these new mutations may be druggable targets for alternative TKIs. Several studies have identified the utility of liquid biopsy in the identification of EGFR driver and acquired resistance with good sensitivities for various blood-based biomarkers. With a plethora of sequencing technologies and platforms available currently, further evaluations using randomized controlled trials (RCTs) in multicentric, multiethnic and larger patient cohorts could enable optimization of liquid-based assays for the detection of EGFR mutations, and support testing of CYP450 enzymes and drug transporter polymorphisms to guide precise dosing of EGFR TKIs.
Collapse
Affiliation(s)
- Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Spencer Peh
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nayonika Mukherjee
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raveena Kantamneni
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Pai
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Naveena Kumar An
- Department of Surgical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vivek M Rangnekar
- Markey Cancer Centre and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
41
|
Lv C, Hu Y, Zhou X, Zhu Y, Wang J, Zhou F. CircRNA SOD2 motivates non-small cell lungs cancer advancement with EMT via acting as microRNA-2355-5p’s competing endogenous RNA to mediate calmodulin regulated spectrin associated proteins-2. Bioengineered 2022; 13:5756-5768. [PMID: 35188072 PMCID: PMC8974208 DOI: 10.1080/21655979.2021.2024331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are closely linked with human cancer development such as non-small-cell lung cancer (NSCLC). However, the characteristics and specific functions of most circRNAs in NSCLC remained unknown. Previous studies have suggested that circRNA SOD2 (CircSOD2) expression was upregulated in a number of cancers. This study aimed to explore the functions of circSOD2 in NSCLC advancement with epithelial-mesenchymal transition (EMT). Expression profile analysis of circSOD2, miR-2355-5p, and calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) was detected by real-time quantitative PCR (RT-qPCR). Transwell assay, cell migration assay, CCK8, ELISA, RIP assay, RNA pull-down assay, and Western blot analysis were performed to evaluate the functions of circSOD2, miR-2355-5p, and CAMSAP2. We found elevated expression of circSOD2 and CAMSAP2 while reduced expression of miR-2355-5p in NSCLC tumor tissues. Silencing or overexpression of CircSOD2 resulted in increased or decreased expression of miR-2355-5p, respectively. Mechanically, we showed that silencing of CircSOD2 and overexpression of miR-2355-5p resulted in the reduced rate of NSCLC cell proliferation. Inhibition of miR-2355-5p reversed the changes induced via silencing of CircSOD2. MiR-2355-5p binds to the CircSOD2 promoter and triggered its stimulation, which further activated circSOD2 expression. CircSOD2 suppression impaired lung cancer cell growth, cell migration, prohibited cell cycle progression, and in vivo tumor growth by targeting miR-2355-5p expression in NSCLC tissues. Meanwhile, increased expression of CAMSAP2 reversed the changes stimulated by the elevated level of miR-2355-5p in NSCLC progression. This innovative signaling axis CircSOD2/miR-2355-5p/CAMSAP2 illustrated the new horizon to investigate NSCLC tumorigenesis and provided new prognosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Changsheng Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Yiying Hu
- Department of Neuroelectrophysiology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Xin Zhou
- Department of Histology and Embryology, Dalian Medical University, Dalian City, Liaoning Province, China
| | - Yuntao Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Jin Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Fachen Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| |
Collapse
|
42
|
Wei D, Zeng J, Rong F, Xu Y, Wei R, Zou C. Circ_0020123 enhances the cisplatin resistance in non-small cell lung cancer cells partly by sponging miR-140-3p to regulate homeobox B5 (HOXB5). Bioengineered 2022; 13:5126-5140. [PMID: 35170372 PMCID: PMC8974048 DOI: 10.1080/21655979.2022.2036910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cisplatin (DDP) therapy is widely used for the treatment of non-small cell lung cancer (NSCLC), but the curative effect is limited by chemoresistance. This study was designed to explore circ_0020123 function in DDP resistance of NSCLCDDP. Expression detection for circ_0020123, microRNA-140-3p (miR-140-3p) and homeobox B5 (HOXB5) was performed by real-time polymerase chain reaction (qRT-PCR). Half inhibitory concentration (IC50) of DDP and cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. Colony formation ability was assessed using colony formation assay. Cell migration and invasion were evaluated via transwell assay. Cell apoptosis was examined by flow cytometry. Protein analysis was conducted by Western blot. Dual-luciferase reporter assay was used to affirm target interaction. Circ_0020123 expression was upregulated in DDP-resistant NSCLC cells. DDP resistance was reduced by downregulation of circ_0020123 in NSCLC cells. Circ_0020123 was identified as a miR-140-3p sponge. The effect of si-circ_0020123 on DDP resistance was partly associated with miR-140-3p upregulation. HOXB5 was a downstream target for miR-140-3p. Overexpression of HOXB5 mitigated miR-140-3p-induced inhibition of DDP resistance in NSCLC cells. Circ_0020123 upregulated the level of HOXB5 partly via sponging miR-140-3p. Also, circ_0020123 promoted tumor growth in NSCLC/DDP xenografts by regulating miR-140-3p and HOXB5 levels at least in part. These results revealed that circ_0020123 promoted DDP resistance in NSCLC cells partly by targeting miR-140-3p/HOXB5 axis, indicating that circ_0020123 might be used as a molecular target in DDP treatment for NSCLC.
Collapse
Affiliation(s)
- Dong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Jing Zeng
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Feng Rong
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Yasheng Xu
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Rong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Can Zou
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| |
Collapse
|
43
|
Li Y, Yang X, Xiong X. Circ_0004015 silencing represses cisplatin chemoresistance and tumor progression by reducing KLF8 in a miR-198-dependent manner in non-small cell lung cancer. Genomics 2022; 114:110294. [DOI: 10.1016/j.ygeno.2022.110294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
|
44
|
Fan D, Yang Y, Zhang W. A novel circ_MACF1/miR-942-5p/TGFBR2 axis regulates the functional behaviors and drug sensitivity in gefitinib-resistant non-small cell lung cancer cells. BMC Pulm Med 2022; 22:27. [PMID: 34996416 PMCID: PMC8742390 DOI: 10.1186/s12890-021-01731-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Resistance to gefitinib remains a major obstacle for the successful treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. In this paper, we studied the precise actions of circular RNA (circRNA) microtubule actin crosslinking factor 1 (circ_MACF1) in gefitinib resistance. METHODS We established gefitinib-resistant NSCLC cells (PC9/GR and A549/GR). The levels of circ_MACF1, microRNA (miR)-942-5p, and transforming growth factor beta receptor 2 (TGFBR2) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Subcellular fractionation and Ribonuclease R (RNase R) assays were done to characterize circ_MACF1. Cell survival, proliferation, colony formation, apoptosis, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-2'-Deoxyuridine (EdU), colony formation, flow cytometry, and transwell assays, respectively. Dual-luciferase reporter assays were used to verify the direct relationship between miR-942-5p and circ_MACF1 or TGFBR2. The xenograft assays were used to assess the role of circ_MACF1 in vivo. RESULTS Circ_MACF1 was down-regulated in A549/GR and PC9/GR cells. Overexpression of circ_MACF1 repressed proliferation, migration, invasion, and promoted apoptosis and gefitinib sensitivity of A549/GR and PC9/GR cells in vitro, as well as inhibited tumor growth under gefitinib in vivo. Circ_MACF1 directly targeted miR-942-5p, and miR-942-5p mediated the regulatory effects of circ_MACF1. TGFBR2 was identified as a direct and functional target of miR-942-5p. Circ_MACF1 modulated TGFBR2 expression through miR-942-5p. CONCLUSION Our findings demonstrated that circ_MACF1 regulated cell functional behaviors and gefitinib sensitivity of A549/GR and PC9/GR cells at least partially by targeting miR-942-5p to induce TGFBR2 expression.
Collapse
Affiliation(s)
- Daping Fan
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Yue Yang
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Wei Zhang
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
45
|
Liu Y, Zhai R, Hu S, Liu J. Circular RNA circ-RNF121 contributes to cisplatin (DDP) resistance of non-small-cell lung cancer cells by regulating the miR-646/SOX4 axis. Anticancer Drugs 2022; 33:e186-e197. [PMID: 34387608 DOI: 10.1097/cad.0000000000001184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemo-resistance is considered a major obstacle in the clinical treatment of non-small-cell lung cancer (NSCLC). Circular RNA (circRNA) circ-RNF121 (hsa_circ_0023404) has been identified to be related to the cisplatin (DDP) resistance. However, the role and mechanism of circ-RNF121 in the DDP resistance in NSCLC are still unknown. Real-time quantitative PCR (RT-qPCR) was applied to detect the levels of circ-RNF121, microRNA-646 (miR-646) and SRY-related HMG box transcription factor 4 (SOX4). Cell viability, proliferation, apoptosis, migration, invasion and cell cycle progression were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation, flow cytometry, wound-healing, transwell and flow cytometry assays, severally. The binding relationship between miR-646 and circ-RNF121 or SOX4 was predicted by the circular RNA interactome or Target Scan Human7.2 and then verified by a dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. SOX4 protein level was measured by western blot assay. The biological role of circ-RNF121 on NSCLC tumor growth and drug resistance was examined by the xenograft tumor model in vivo. Circ-RNF121 and SOX4 were increased, and miR-646 was declined in DDP-resistant NSCLC tissues and cells. Furthermore, the circ-RNF121 deficiency could enhance DDP sensitivity by inhibiting cell proliferation, migration, invasion, cell cycle progression and promoting apoptosis in DDP-resistant NSCLC cells in vitro. Mechanically, circ-RNF121 served as a sponge of miR-646 to increase SOX4 expression. Circ-RNF121 knockdown improved the drug sensitivity of NSCLC in vivo. Circ-RNF121 silencing could reduce the DDP resistance of NSCLC cells by regulating SOX4 expression via miR-646. These findings hinted at a promising therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Yongrui Liu
- Department of Oncology, Linyi Jinluo Hospital, Linyi
| | - Ruiren Zhai
- Department of Oncology, Hainan Yiling Medical Development Co., Ltd, Qionghai
| | - Siqin Hu
- Department of Oncology, The People's Hospital of Longhua, Shenzhen
| | - Jing Liu
- Department of Oncology, Sunshine Union Hospital, Weifang, China
| |
Collapse
|
46
|
Niu R, Li D, Chen J, Zhao W. Circ_0014235 confers Gefitinib resistance and malignant behaviors in non-small cell lung cancer resistant to Gefitinib by governing the miR-146b-5p/YAP/PD-L1 pathway. Cell Cycle 2021; 21:86-100. [PMID: 34919024 DOI: 10.1080/15384101.2021.2009986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as Gefitinib, have been recommended as the first-line treatment reagent for advanced EGFR-mutant non-small cell lung cancer (NSCLC). However, the mechanisms of drug resistance development are not fully determined. This study aimed to explore the role of circular RNA (circ_0014235) in Gefitinib-resistant NSCLC. The expression of circ_0014235, microRNA-146b-5p (miR-146b-5p) and Yes1 associated transcriptional regulator (YAP) mRNA was detected by quantitative real-time PCR (qPCR). Cell viability was detected by CCK-8 assay. Cell proliferation was assessed by colony formation assay and EdU assay. Cell cycle and cell apoptosis were determined by flow cytometry assay. The expression of marker proteins, YAP protein and programmed death ligand 1 (PD-L1) protein was detected by Western blot. The putative relationship between miR-146b-5p and circ_0014235 or YAP was ensured by dual-luciferase reporter assay and RIP assay. Animal models were established to explore the role of circ_0014235 in vivo. Circ_0014235 was highly expressed in Gefitinib-resistant NSCLC cells. Circ_0014235 downregulation reduced Gefitinib IC50, inhibited cell proliferation and induced cell apoptosis and cell cycle arrest in Gefitinib-resistant NSCLC cells, while these effects were reversed by the inhibition of miR-146b-5p, a target of circ_0014235. In addition, YAP was a target gene of miR-146b-5p, and circ_0014235 relieved miR-146b-5p-mediated inhibition on YAP by targeting miR-146b-5p. MiR-146b-5p restoration-blocked Gefitinib IC50 and cell malignant behaviors were recovered by YAP overexpression. YAP positively regulated PD-L1 expression, and YAP overexpression contributes to Gefitinib IC50 and cell malignant behaviors by upregulating PD-L1. Circ_0014235 confers Gefitinib resistance and malignant behaviors in Gefitinib-resistant NSCLC by governing the miR-146b-5p/YAP/PD-L1 pathway.
Collapse
Affiliation(s)
- Rong Niu
- Department of Thoracic Surgery, Gansu Provincial Cancer Hospital, Lanzhou City, China
| | - Dong Li
- Department of Thoracic Surgery, Gansu Provincial Cancer Hospital, Lanzhou City, China
| | - Jian Chen
- Department of Thoracic Surgery, Gansu Provincial Cancer Hospital, Lanzhou City, China
| | - Wentao Zhao
- Department of Thoracic Surgery, Gansu Provincial Cancer Hospital, Lanzhou City, China
| |
Collapse
|
47
|
Dai C, Liu B, Li S, Hong Y, Si J, Xiong Y, Wu N, Ma Y. Construction of a circRNA-miRNA-mRNA Regulated Pathway Involved in EGFR-TKI Lung Adenocarcinoma Resistance. Technol Cancer Res Treat 2021; 20:15330338211056809. [PMID: 34825849 PMCID: PMC8647233 DOI: 10.1177/15330338211056809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives: Epidermal growth factor receptor-tyrosine kinase
inhibitors are widely used for lung epidermal growth factor receptor-positive
lung adenocarcinomas, but acquired resistance is inevitable. Although non-coding
RNAs, such as circular RNA and microRNA, are known to play vital roles in
epidermal growth factor receptor-tyrosine kinase inhibitor resistance,
comprehensive analysis is lacking. Thus, this study aimed to explore the
circular RNA-microRNA-messenger RNA regulatory network involved in epidermal
growth factor receptor-tyrosine kinase inhibitor resistance.
Methods: To identify differentially expressed genes between the
epidermal growth factor receptor-tyrosine kinase inhibitor sensitive cell line
PC9 and resistant cell line PC9/ epidermal growth factor receptor-tyrosine
kinase inhibitor resistance(PC9/ER), circular RNA, microRNA and messenger RNA
microarrays were performed. Candidates were then identified to construct a
circular RNA-microRNA-messenger RNA network using bioinformatics. Additionally,
Gene Oncology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were
conducted to evaluate the network messenger RNA, setting up a protein-protein
interaction network for hub-gene identification. Afterwards, RNA
immunoprecipitation was performed to enrich microRNA, and quantitative real-time
PCR was used to estimated gene expression levels. Results: In
total, 603, 377, and 1863 differentially expressed circular RNA, microRNA,
messenger RNAs, respectively, were identified using microarray analysis,
constructing a circular RNA-microRNA-messenger RNA network containing 18
circular RNAs, 17 microRNAs and 175 messenger RNAs. Moreover, Gene Oncology and
Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the most
enriched biological process terms and pathways were related to epidermal growth
factor receptor-tyrosine kinase inhibitor resistance, including Wnt and Hippo
signaling pathways. Based on the competing endogenous RNA and protein-protein
interaction network, circ-0007312 was showed to interact with miR-764 and both
circ-0003748 and circ-0001398 were shown to interact with miR-628; both these
microRNAs targeted MAPK1. Furthermore, circ-0007312, circ-0003748, circ-0001398,
and MAPK1 were up-regulated, whereas miR-764 and miR-628 were downregulated in
PC9/ER cells as compared to parental PC9 cells. We also found that circ-0007312
and miR-764 were positively expressed in plasma. Conclusions: Our
original study associated with mechanism of target therapy in lung cancer
provided a systematic and comprehensive regulation of circular RNA, microRNA and
messenger RNA in epidermal growth factor receptor-tyrosine kinase inhibitor
resistance. It was found that circ-0007312- miR-764-MAPK1,
circ-0003748-miR-628-MAPK1, and circ-0001398-miR-628-MAPK1 axis may play key
roles in epidermal growth factor receptor-tyrosine kinase inhibitor
resistance.
Collapse
Affiliation(s)
- Chenyue Dai
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Bing Liu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Shaolei Li
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Yang Hong
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Jiahui Si
- Department of Anesthesiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Ying Xiong
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Nan Wu
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 12519Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| |
Collapse
|
48
|
Xin C, Huang F, Wang J, Li J, Chen Q. Roles of circRNAs in cancer chemoresistance (Review). Oncol Rep 2021; 46:225. [PMID: 34468007 DOI: 10.3892/or.2021.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA) is a type of endogenous, high‑stability, noncoding RNA. circRNAs exhibit various biological functions, and are involved in physiological and pathological processes occurring in various diseases, including cancers. They can not only act as microRNA and protein sponges, but also interact with proteins, translated peptides, and transcriptional and translational regulators, and compete with pre‑mRNA splicing. Chemotherapy is one of the most important types of cancer treatment. However, the resistance of cancer cells to chemotherapy is a leading reason for the failure of chemotherapy. It has been reported that circRNAs play important roles in cancer resistance via a number of mechanisms. The functions of the circRNAs provide insight into their roles in chemoresistance pathways. In addition, some circRNAs may serve as novel biomarkers for the diagnosis and prognosis of cancer resistance. Obtaining improved understanding of the molecular regulatory networks featuring circRNAs in tumors and searching for markers for the diagnosis and treatment of cancer resistance are leading issues in circRNA research. The present review introduced the functions of circRNAs, illustrated the mechanisms underlying drug resistance in cancer, described the contributions of circRNAs to this resistance and discussed the potential application of circRNAs in the treatment of drug‑resistant cancer. In particular, the review aimed to reveal the main mechanisms of circRNAs in cancer drug resistance, including mechanisms involving drug transport and metabolism, alterations of drug targets, DNA damage repair, downstream resistance mechanisms, adaptive responses and the tumor microenvironment. The findings may provide novel therapeutic targets for clinical treatment of cancer chemoresistance.
Collapse
Affiliation(s)
- Chuan Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
49
|
Wang X, Wang H, Jiang H, Qiao L, Guo C. Circular RNAcirc_0076305 Promotes Cisplatin (DDP) Resistance of Non-Small Cell Lung Cancer Cells by Regulating ABCC1 Through miR-186-5p. Cancer Biother Radiopharm 2021. [PMID: 34339285 DOI: 10.1089/cbr.2020.4153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Lung cancer is a social problem of increasing concern, and non-small cell lung cancer (NSCLC) accounts for 80%-85% incidence of lung cancer. Cisplatin (DDP) is reported as a first-line chemotherapy drug for NSCLC, but the resistance has became a main obstacle for NSCLC treatment. The high level of circular RNA circ_0076305 was related to the DDP resistance in NSCLC. However, the mechanism of circ_0076305 remains unclear in DDP resistance of NSCLC. Materials and Methods: Exosomes were detected by a transmission electron microscope and nanoparticle tracking analysis. The protein levels of CD63, CD81, P-glycoprotein (P-gp), Lung resistance-related protein, and ATP-binding cassette subfamily C member 1 (ABCC1) were examined by Western blot assay. Circ_0076305, microRNA-186-5p (miR-186-5p), and ABCC1 levels were tested by real-time quantitative polymerase chain reaction. DDP resistance was examined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay. The binding relationship between miR-186-5p and circ_0076305 or ABCC1 was predicted by circRNA interactome or starBase, and then verified by dual-luciferase reporter and RNA immunoprecipitation assays. The effect of circ_0076305 on DDP resistance in NSCLC was examined by xenograft tumor model in vivo. Results: Circ_0076305 was increased in NSCLC cell-derived exosomes, DDP-resistant NSCLC tissues and cells. Circ_0076305 knockdown elevated DDP sensitivity in vitro. Mechanically, circ_0076305 enhanced ABCC1 expression through sponging miR-186-5p, thus regulating DDP resistance of NSCLC. Furthermore, circ_0076305 silencing improved DDP sensitivity of NSCLC in vivo. Conclusion: The results from this study disclosed that circ_0076305 knockdown improved DDP sensitivity by the miR-186-5p/ABCC1 axis in NSCLC, hinting a potential circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| | - Hailiang Wang
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| | - Housen Jiang
- Department of Orthopedic Surgery, and Weifang People's Hospital, Weifang, China
| | - Liang Qiao
- Department of Urology, Weifang People's Hospital, Weifang, China
| | - Chunhong Guo
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| |
Collapse
|
50
|
Ma Y, Zheng L, Gao Y, Zhang W, Zhang Q, Xu Y. A Comprehensive Overview of circRNAs: Emerging Biomarkers and Potential Therapeutics in Gynecological Cancers. Front Cell Dev Biol 2021; 9:709512. [PMID: 34368160 PMCID: PMC8335568 DOI: 10.3389/fcell.2021.709512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Circular RNA (circRNA) is a highly conserved, stable and abundant non-coding RNA (ncRNA). Also, some circRNAs play an essential part in the progression of human cancers. CircRNA is different from traditional linear RNA. CircRNA has a closed circular structure, so it is resistant to exonuclease-mediated degradation and is more stable than linear RNA. Numerous studies have found that many circRNAs can act as a microRNA (miRNA) sponge, interact with RNA-binding proteins, regulate gene transcription, affect alternative splicing and be translated into proteins. Recently, some studies have also indicated that circRNA participates in the progression of gynecological cancers. In addition, circRNA can act as a promising biomarker for the diagnosis of gynecological tumors. Additionally, they can also play a key role in the prognosis of gynecological tumors. Furthermore, to our delight, circRNA may be a potential therapeutic target in gynecological cancers and widely used in clinical practice. This article reviews the functions and related molecular mechanisms of circRNAs in gynecological tumors, and discusses their potential as biomarkers for diagnostic and prognostic and therapeutic targets for gynecological cancers.
Collapse
Affiliation(s)
- Yalan Ma
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Yiyin Gao
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Wenying Zhang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|