1
|
Roy S, Curry SD, Bagot CC, Mueller EN, Mansouri AM, Park W, Cha JN, Goodwin AP. Enzyme Prodrug Therapy with Photo-Cross-Linkable Anti-EGFR Affibodies Conjugated to Upconverting Nanoparticles. ACS NANO 2022; 16:15873-15883. [PMID: 36129781 PMCID: PMC10197967 DOI: 10.1021/acsnano.2c02558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, we demonstrate that a photo-cross-linkable conjugate of upconverting nanoparticles and cytosine deaminase can catalyze prodrug conversion specifically at tumor sites in vivo. Non-covalent association of proteins and peptides with cellular surfaces leads to receptor-mediated endocytosis and catabolic degradation. Recently, we showed that covalent attachment of proteins such as affibodies to cell receptors yields extended expression on cell surfaces with preservation of protein function. To adapt this technology for in vivo applications, conjugates were prepared from upconverting nanoparticles and fusion proteins of affibody and cytosine deaminase enzyme (UC-ACD). The affibody allows covalent photo-cross-linking to epidermal growth factor receptors (EGFRs) overexpressed on Caco-2 human colorectal cancer cells under near-infrared (NIR) light. Once bound, the cytosine deaminase portion of the fusion protein converts the prodrug 5-fluorocytosine (5-FC) to the anticancer drug 5-fluorouracil (5-FU). NIR covalent photoconjugation of UC-ACD to Caco-2 cells showed 4-fold higher retention than observed with cells that were not irradiated in vitro. Next, athymic mice expressing Caco-2 tumors showed 5-fold greater UC-ACD accumulation in the tumors than either conjugates without the CD enzyme or UC-ACDs in the absence of NIR excitation. With oral administration of 5-FC prodrug, tumors with photoconjugated UC-ACD yielded 2-fold slower growth than control groups, and median mouse survival increased from 28 days to 35 days. These experiments demonstrate that enzyme-decorated nanoparticles can remain viable after a single covalent photoconjugation in vivo, which can in turn localize prodrug conversion to tumor sites for multiple weeks.
Collapse
Affiliation(s)
- Shambojit Roy
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Shane D. Curry
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Conrad Corbella Bagot
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Evan N. Mueller
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Abdulrahman M. Mansouri
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Wounjhang Park
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Jennifer N. Cha
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, 596 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
2
|
Xu C, Yu M, Xie Y, Zhong J, Chen W, Lin M, Hu X, Shen Y. Screening and identification of vancomycin anti-idiotypic antibodies for against Staphylococcus aureus from a human phage display domain antibody library. Immunol Lett 2022; 246:1-9. [DOI: 10.1016/j.imlet.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
3
|
A Multi-Disulfide Receptor-Binding Domain (RBD) of the SARS-CoV-2 Spike Protein Expressed in E. coli Using a SEP-Tag Produces Antisera Interacting with the Mammalian Cell Expressed Spike (S1) Protein. Int J Mol Sci 2022; 23:ijms23031703. [PMID: 35163624 PMCID: PMC8835783 DOI: 10.3390/ijms23031703] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
An Escherichia coli (E. coli) production of the receptor-binding domain (RBD) of the SARS-CoV-2 (isolate Wuhan-Hu-1) spike protein would significantly accelerate the search for anti-COVID-19 therapeutics because of its versatility and low cost. However, RBD contains four disulfide bonds and its expression in E. coli is limited by the formation of aberrant disulfide bonds resulting in inclusion bodies. Here, we show that a solubility-enhancing peptide (SEP) tag containing nine arginine residues (RBD-C9R) attached at the C-terminus can overcome this problem. The SEP-tag increased the expression in the soluble fraction and the final yield by five times (2 mg/L). The folding properties of the E. coli expressed RBD-C9R were demonstrated with biophysical characterization using RP-HPLC, circular dichroism, thermal denaturation, fluorescence, and light scattering. A quartz crystal microbalance (QCM) analysis confirmed the binding activity of RBD-C9R with ACE2, the host cell’s receptor. In addition, RBD-C9R elicited a Th-2 immune response with a high IgG titer in Jcl: ICR mice. The RBD-C9R antisera interacted with both itself and the mammalian-cell expressed spike protein (S1), as demonstrated by ELISA, indicating that the E. coli expressed RBD-C9R harbors native-like epitopes. Overall, these results emphasize the potential of our SEP-tag for the E. coli production of active multi-disulfide-bonded RBD.
Collapse
|
4
|
Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 2021; 169:106094. [PMID: 34896590 DOI: 10.1016/j.ejps.2021.106094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Viral infections are a great threat to human health. Currently, there are no effective vaccines and antiviral drugs against the majority of viral diseases, suggesting the need to develop novel and effective antiviral agents. Since the intracellular delivery of antiviral agents, particularly the impermeable molecules, such as peptides, proteins, and nucleic acids, are essential to exert their therapeutic effects, using a delivery system is highly required. Among various delivery systems, cell-penetrating peptides (CPPs), a group of short peptides with the unique ability of crossing cell membrane, offer great potential for the intracellular delivery of various biologically active cargoes. The results of numerous in vitro and in vivo studies with CPP conjugates demonstrate their promise as therapeutic agents in various medical fields including antiviral therapy. The CPP-mediated delivery of various antiviral agents including peptides, proteins, nucleic acids, and nanocarriers have been associated with therapeutic efficacy both in vitro and in vivo. This review describes various aspects of viruses including their biology, pathogenesis, and therapy and briefly discusses the concept of CPP and its potential in drug delivery. Particularly, it will highlight a variety of CPP applications in the management of viral infections.
Collapse
|
5
|
Kibria MG, Fukutani A, Akazawa-Ogawa Y, Hagihara Y, Kuroda Y. Anti-EGFR V HH Antibody under Thermal Stress Is Better Solubilized with a Lysine than with an Arginine SEP Tag. Biomolecules 2021; 11:biom11060810. [PMID: 34072518 PMCID: PMC8229009 DOI: 10.3390/biom11060810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we assessed the potential of arginine and lysine solubility-enhancing peptide (SEP) tags to control the solubility of a model protein, anti-EGFR VHH-7D12, in a thermally denatured state at a high temperature. We produced VHH-7D12 antibodies attached with a C-terminal SEP tag made of either five or nine arginines or lysines (7D12-C5R, 7D12-C9R, 7D12-C5K and 7D12-C9K, respectively). The 5-arginine and 5-lysine SEP tags increased the E. coli expression of VHH-7D12 by over 80%. Biophysical and biochemical analysis confirmed the native-like secondary and tertiary structural properties and the monomeric nature of all VHH-7D12 variants. Moreover, all VHH-7D12 variants retained a full binding activity to the EGFR extracellular domain. Finally, thermal stress with 45-minute incubation at 60 and 75 °C, where VHH-7D12 variants are unfolded, showed that the untagged VHH-7D12 formed aggregates in all of the four buffers, and the supernatant protein concentration was reduced by up to 35%. 7D12-C5R and 7D12-C9R did not aggregate in Na-acetate (pH 4.7) and Tris-HCl (pH 8.5) but formed aggregates in phosphate buffer (PB, pH 7.4) and phosphate buffer saline (PBS, pH 7.4). The lysine tags (either C5K or C9K) had the strongest solubilization effect, and both 7D12-C5K and 7D12-C9K remained in the supernatant. Altogether, our results indicate that, under a thermal stress condition, the lysine SEP tags solubilization effect is more potent than that of an arginine SEP tags, and the SEP tags did not affect the structural and functional properties of the protein.
Collapse
Affiliation(s)
- Md. Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; (M.G.K.); (A.F.)
| | - Akari Fukutani
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; (M.G.K.); (A.F.)
| | - Yoko Akazawa-Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan; (Y.A.-O.); (Y.H.)
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan; (Y.A.-O.); (Y.H.)
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; (M.G.K.); (A.F.)
- Correspondence: ; Tel./Fax: +81-42-388-7794
| |
Collapse
|
6
|
Brindha S, Kibria MG, Saotome T, Unzai S, Kuroda Y. EGFR extracellular domain III expressed in Escherichia coli with SEP tag shows improved biophysical and functional properties and generate anti-sera inhibiting cancer cell growth. Biochem Biophys Res Commun 2021; 555:121-127. [PMID: 33813270 DOI: 10.1016/j.bbrc.2021.03.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
The epidermal growth factor receptor extracellular domain III (EGFR-ECDIII) protein is a promising target of anti-cancer research, and its production in Escherichia coli would thus represent significant benefits. However, despite its moderate size (19 kDa), the expression of EGFR-ECDIII in E.coli is hampered by the presence of multiple cysteines producing misfolded proteins with incorrect S-S bonds. In our study, we show that a short 12-residue solubility enhancing peptide (SEP) tag containing nine arginines (C9R) attached at the C-terminus of EGFR-ECDIII reduces the inclusion body formation and increases the final yield by six times (20 mg/L). EGFR-ECDIII-C9R purified from the soluble fraction eluted as a sharp single RP-HPLC peak, suggesting a single S-S bond pairing. Biophysical characterization using circular dichroism, fluorescence, and light scattering confirmed its native-like properties together with reversible thermal denaturation. The binding activity of EGFR-ECDIII-C9R to anti-EGFR-VHH7D12, a single-domain antibody with specific binding to the ECDIII, was assessed by sandwich ELISA. Further, we produced anti-EGFR-ECDIII-C9R antisera in mouse models and anti-sera inhibited A431 cancer cells' growth. These results demonstrate that the SEP tag enables the rapid production of the multiple disulfide-bonded EGFR-ECDIII in E. coli having native-like biophysical properties and producing neutralizing antibodies.
Collapse
Affiliation(s)
- Subbaian Brindha
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
| | - Md Golam Kibria
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tomonori Saotome
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan; Department of Bioengineering, Nagaoka University of Technology, Niigata, 940-2188, Japan
| | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajino-Cho, Koganei-shi, Tokyo, 184-8584, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
7
|
Sharifi J, Khirehgesh MR, Safari F, Akbari B. EGFR and anti-EGFR nanobodies: review and update. J Drug Target 2020; 29:387-402. [DOI: 10.1080/1061186x.2020.1853756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jafar Sharifi
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Fatemeh Safari
- School of Paramedical Sciences, Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Roy S, Cha JN, Goodwin AP. Nongenetic Bioconjugation Strategies for Modifying Cell Membranes and Membrane Proteins: A Review. Bioconjug Chem 2020; 31:2465-2475. [PMID: 33146010 DOI: 10.1021/acs.bioconjchem.0c00529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell membrane possesses an extensive library of proteins, carbohydrates, and lipids that control a significant portion of inter- and intracellular functions, including signaling, proliferation, migration, and adhesion, among others. Augmenting the cell surface composition would open possibilities for advances in therapy, tissue engineering, and probing fundamental cell processes. While genetic engineering has proven effective for many in vitro applications, these techniques result in irreversible changes to cells and are difficult to apply in vivo. Another approach is to instead attach exogenous functional groups to the cell membrane without changing the genetic nature of the cell. This review focuses on more recent approaches of nongenetic methods of cell surface modification through metabolic pathways, anchorage by hydrophobic interactions, and chemical conjugation. Benefits and drawbacks of each approach are considered, followed by a discussion of potential applications for nongenetic cell surface modification and an outlook on the future of the field.
Collapse
|
9
|
Ma H, Ó'Fágáin C, O'Kennedy R. Antibody stability: A key to performance - Analysis, influences and improvement. Biochimie 2020; 177:213-225. [PMID: 32891698 DOI: 10.1016/j.biochi.2020.08.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/01/2023]
Abstract
An antibody's stability greatly influences its performance (i.e. its specificity and affinity). Thus, stability is a major issue for researchers and manufacturers, especially with the increasing use of antibodies in therapeutics, diagnostics and rapid analytical platforms. Here we review antibody stability under five headings: (i) measurement techniques; (ii) stability issues in expression and production (expression, proteolysis, aggregation); (iii) effects of antibody format and engineering on stability and (iv) formulation, drying and storage conditions. We consider more than 100 sources, including patents, and conclude with (v) recommendations to promote antibody stability.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland
| | - Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, D09 V2O9, Ireland; Qatar Foundation, Research Complex, And Hamad Bin Khalifa University, Education City, Doha, Qatar
| |
Collapse
|
10
|
Rahman N, Islam MM, Kibria MG, Unzai S, Kuroda Y. A systematic mutational analysis identifies a 5-residue proline tag that enhances the in vivo immunogenicity of a non-immunogenic model protein. FEBS Open Bio 2020; 10:1947-1956. [PMID: 33017095 PMCID: PMC7530378 DOI: 10.1002/2211-5463.12941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Poor immunogenicity of small proteins is a major hurdle in developing vaccines or producing antibodies for biopharmaceutical usage. Here, we systematically analyzed the effects of 10 solubility controlling peptide tags (SCP‐tags) on the immunogenicity of a non‐immunogenic model protein, bovine pancreatic trypsin inhibitor (BPTI‐19A; 6 kDa). CD, fluorescence, DLS, SLS, and AUC measurements indicated that the SCP‐tags did not change the secondary structure content nor the tertiary structures of the protein nor its monomeric state. ELISA results indicated that the 5‐proline (C5P) and 5‐arginine (C5R) tags unexpectedly increased the IgG level of BPTI‐19A by 240‐ and 73‐fold, respectively, suggesting that non‐oligomerizing SCP‐tags may provide a novel method for increasing the immunogenicity of a protein in a highly specific manner.
Collapse
Affiliation(s)
- Nafsoon Rahman
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohammad Monirul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Md Golam Kibria
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
11
|
Kibria MG, Akazawa-Ogawa Y, Rahman N, Hagihara Y, Kuroda Y. The immunogenicity of an anti-EGFR single domain antibody (V HH) is enhanced by misfolded amorphous aggregation but not by heat-induced aggregation. Eur J Pharm Biopharm 2020; 152:164-174. [PMID: 32416134 DOI: 10.1016/j.ejpb.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022]
Abstract
Amorphous aggregates of therapeutic proteins can provoke an unwanted immune response (anti-drug antibodies; ADAs), but counter-examples have led to some controversy. Amorphous aggregates can possess unique biophysical and biochemical attributes depending on both the way they are generated and the protein's biophysical/biochemical properties. Here, we examine the immunogenicity of an anti-EGFR single domain antibody (VHH) in four types of amorphous aggregates: two heat-aggregated VHH incubated at 65 °C (VHH-65) and 95 °C (VHH-95), a misfolded VHH isolated from the insoluble fraction of the E. coli lysate (VHH-Ins), and a low solubility misfolded VHH produced by miss-shuffling the SS bonds of the native VHH (VHH-Mis). Biophysical and biochemical measurements indicated that VHH was indeed natively folded, monomeric, and β-sheeted; that VHH-65 was partially unfolded and formed aggregates with a Z-average (Zave) of 771 nm; whereas VHH-95 was unfolded and formed aggregates of 1722 nm; and that both VHH-Ins and VHH-Mis were misfolded with non-native intermolecular SS bonds and formed aggregates with a Zave of 1846 nm and 1951 nm, respectively. The IgG level generated in Jcl:ICR mice determined by ELISA showed that the native VHH was barely immunogenic, VHH-95 was not immunogenic, while VHH-65 was mildly immunogenic. By contrast, the misfolded aggregates, VHH-Ins and VHH-Mis, having a Zave and an aggregation propensity similar to that of VHH-95, were highly immunogenic. These findings indicate the critical role of the biochemical and biophysical attributes of the amorphous aggregates in generating an immune response against a protein, rather than just their sizes.
Collapse
Affiliation(s)
- Md Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoko Akazawa-Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Nafsoon Rahman
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
12
|
Kuroda D, Tsumoto K. Engineering Stability, Viscosity, and Immunogenicity of Antibodies by Computational Design. J Pharm Sci 2020; 109:1631-1651. [DOI: 10.1016/j.xphs.2020.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/25/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
|
13
|
Rahman N, Islam MM, Unzai S, Miura S, Kuroda Y. Nanometer-Sized Aggregates Generated Using Short Solubility Controlling Peptide Tags Do Increase the In Vivo Immunogenicity of a Nonimmunogenic Protein. Mol Pharm 2020; 17:1629-1637. [DOI: 10.1021/acs.molpharmaceut.0c00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nafsoon Rahman
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Mohammad Monirul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - Shiho Miura
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|