1
|
Huang Z, Tan Y. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Int J Mol Sci 2023; 24:8368. [PMID: 37176077 PMCID: PMC10179184 DOI: 10.3390/ijms24098368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress (OS) arises as a consequence of an imbalance between the formation of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them. Excessive ROS production can lead to the damage of critical biomolecules, such as lipids, proteins, and DNA, ultimately contributing to the onset and progression of a multitude of diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer's disease, and cancer. Cylindromatosis (CYLD), initially identified as a gene linked to familial cylindromatosis, has a well-established and increasingly well-characterized function in tumor inhibition and anti-inflammatory processes. Nevertheless, burgeoning evidence suggests that CYLD, as a conserved deubiquitination enzyme, also plays a pivotal role in various key signaling pathways and is implicated in the pathogenesis of numerous diseases driven by oxidative stress. In this review, we systematically examine the current research on the function and pathogenesis of CYLD in diseases instigated by oxidative stress. Therapeutic interventions targeting CYLD may hold significant promise for the treatment and management of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China;
| |
Collapse
|
2
|
Fu YW, Li L, Wang XQ, Zhou Y, Zhu LF, Mei YM, Xu Y. The inhibitory effect of the deubiquitinase cylindromatosis (CYLD) on inflammatory responses in human gingival fibroblasts. Oral Dis 2020; 27:1487-1497. [PMID: 33031609 DOI: 10.1111/odi.13672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Experiments were performed to evaluate CYLD expression in human gingival tissue samples and to examine the effects of CYLD on inflammatory responses in lipopolysaccharide (LPS)- or TNF-α-stimulated human gingival fibroblasts (HGFs). METHODS Immunohistochemistry for CYLD and p65 expression was performed with healthy and inflamed gingival tissue samples. siRNA was used to knock down the expression of CYLD in HGFs. Upon LPS or TNF-α stimulation, NF-κB activation was detected in control and CYLD-knockdown HGFs. RT-PCR was applied to determine gene expression. Western blot analyses were employed to assess protein expression. Immunofluorescence staining was carried out to evaluate the nuclear translocation of p65. RESULTS Immunohistochemical staining showed the expression of CYLD in human gingival tissues. In addition, CYLD protein expression was reduced in inflamed gingival tissue samples compared with healthy tissue samples. CYLD knockdown greatly enhanced the mRNA expression of proinflammatory cytokines in LPS- or TNF-α-stimulated HGFs. Furthermore, knocking down CYLD expression increased LPS-stimulated NF-κB activation in HGFs. Unexpectedly, CYLD knockdown did not affect TNF-α-induced NF-κB activation. CONCLUSIONS Our results suggest that CYLD participates in periodontal inflammatory responses by negatively regulating LPS-induced NF-κB signalling.
Collapse
Affiliation(s)
- Yong-Wei Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Department of Stomatology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Fang Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - You-Min Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|