1
|
Yadav P, Beura SK, Panigrahi AR, Bhardwaj T, Giri R, Singh SK. Platelet-derived microvesicles activate human platelets via intracellular calcium mediated reactive oxygen species release. Blood Cells Mol Dis 2023; 98:102701. [DOI: 10.1016/j.bcmd.2022.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
|
2
|
Bathla T, Abolbaghaei A, Reyes AB, Burger D. Extracellular vesicles in gestational diabetes mellitus: A scoping review. Diab Vasc Dis Res 2022; 19:14791641221093901. [PMID: 35395915 PMCID: PMC9021497 DOI: 10.1177/14791641221093901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy worldwide. Despite extensive study, the molecular mechanisms leading to GDM and associated perinatal complications are not well understood. The condition is also associated with an increased risk of future cardiometabolic disease in both mothers and their offspring. Thus, there is a pressing need for the development of effective screening tools and to identify novel molecular mechanisms responsible for the short and long-term risks associated with GDM. In this regard, extracellular vesicles (EVs) offer promise as novel biomarkers of GDM-mediated changes to both mother and fetus. The purpose of this scoping review is to provide an overview of studies examining EVs in the context of GDM. EMBASE and Ovid Medline were searched for articles published from inception to December 2020. We update current knowledge in this area and identify key knowledge gaps with recommendations for future research.
Collapse
Affiliation(s)
- Tanvi Bathla
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Akram Abolbaghaei
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Agafe Bless Reyes
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Cai X, He L, Zhou G, Li S, Liao X. Mogroside IIe Ameliorates Cardiomyopathy by Suppressing Cardiomyocyte Apoptosis in a Type 2 Diabetic Model. Front Pharmacol 2021; 12:650193. [PMID: 34012399 PMCID: PMC8128068 DOI: 10.3389/fphar.2021.650193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
Mogroside IIe is primarily present in the unripe fruit of Siraitia grosvenorii (Swingle) C. Jeffrey, and it is the predominant saponin component. The purpose of this study was to investigate the effects of mogroside IIe (MGE IIe) on myocardial cell apoptosis in diabetic cardiomyopathy (DCM) rats by establishing a high-sugar and high-fat diet–induced model of type 2 diabetes (T2D) in SD rats and a homocysteine (Hcy)-induced apoptotic model in rat H9c2 cardiomyocytes. The results showed that MGE IIe decreased the levels of fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) levels, but increased the levels of high-density lipoprotein (HDL) in the SD rat model. Furthermore, MGE IIe decreased the levels of lactate dehydrogenase 2 (LDH2), creatine phosphokinase isoenzyme (CKMB), and creatine kinase (CK), and improved heart function. Additionally, MGE IIe inhibited the secretion of interleukin-1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α), improved myocardial morphology, and reduced myocardial apoptosis in the SD rat model. Furthermore, MGE IIe inhibited the mRNA and protein expression of active-caspase-3, -8, -9, -12, and Bax and Cyt-C, and promoted the mRNA and protein expression of Bcl-2 in the SD rat model. Furthermore, MGE IIe suppressed homocysteine-induced apoptosis of H9c2 cells by inhibiting the activity of caspases-3, -8, -9, and -12. In conclusion, MGE IIe inhibits the apoptotic pathway, thereby relieving DCM in vivo and in vitro.
Collapse
Affiliation(s)
- Xin Cai
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.,School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Lingmin He
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Guoao Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shenghua Li
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xinghua Liao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wang Y, Li Y, Ma C, Zhou T, Lu C, Ding L, Li L. LncRNA XIST Promoted OGD-Induced Neuronal Injury Through Modulating/miR-455-3p/TIPARP Axis. Neurochem Res 2021; 46:1447-1456. [PMID: 33738662 DOI: 10.1007/s11064-021-03286-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/09/2022]
Abstract
In recent years, the incidence of ischemic stroke has gradually increased, but its pathogenesis has not been fully elucidated. lncRNAs played an important role in the occurrence and regulation of disease, but the research on ischemic stroke is very limited. Therefore, the role of lncRNA in ischemic stroke needs further exploration. The mice model was built to obtain OGD-induced neuronal cells for the following experiments. The protein expression of TCDD inducible poly [ADP-ribose] polymerase (TIPARP), B-cell lymphoma-2 (Bcl-2) and Cleaved Caspase-3 (Cleaved-cas3) were detected with western blot. qRT-PCR was used to analyze expression of XIST, miR-455-3p and TIPARP. CCK-8 assay indicated the capacity of cell proliferation. Flow cytometry was applied to assess cell apoptosis rate. Moreover, dual-luciferase reporter assay and RIP assay were used to determine that the relationship among XIST, miR-455-3p and TIPARP. In this study, we found that oxygen-glucose deprivation (OGD) induced XIST expression, inhibited miR-455-3p expression and promoted TIPARP mRNA and protein expression in neurons. Furthermore, XIST could affect cell growth of OGD-induced neuronal cells. Further analysis showed that XIST could regulate TIPARP by binding to miR-455-3p, and overexpression of miR-455-3p or inhibition of TIPARP could reverse the effects of high XIST expression on OGD-induced neuronal cells. On the contrary, suppression of miR-455-3p or promotion of TIPARP could reverse the effects of low XIST expression on OGD-induced neuronal cells. XIST could affect cell proliferation and apoptosis through miR-455-3p/TIPARP axis in OGD-induced neuronal cells, providing a new regulatory network to understand the pathogenesis of hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Yunfei Li
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Chaoyang Ma
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Chi Lu
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Ding
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China
| | - Lei Li
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, 430014, Hubei, China.
| |
Collapse
|
5
|
Rome S, Blandin A, Le Lay S. Adipocyte-Derived Extracellular Vesicles: State of the Art. Int J Mol Sci 2021; 22:ijms22041788. [PMID: 33670146 PMCID: PMC7916840 DOI: 10.3390/ijms22041788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
White adipose tissue (WAT) is involved in long-term energy storage and represents 10–15% of total body weight in healthy humans. WAT secretes many peptides (adipokines), hormones and steroids involved in its homeostatic role, especially in carbohydrate–lipid metabolism regulation. Recently, adipocyte-derived extracellular vesicles (AdEVs) have been highlighted as important actors of intercellular communication that participate in metabolic responses to control energy flux and immune response. In this review, we focus on the role of AdEVs in the cross-talks between the different cellular types composing WAT with regard to their contribution to WAT homeostasis and metabolic complications development. We also discuss the AdEV cargoes (proteins, lipids, RNAs) which may explain AdEV’s biological effects and demonstrate that, in terms of proteins, AdEV has a very specific signature. Finally, we list and suggest potential therapeutic strategies to modulate AdEV release and composition in order to reduce their deleterious effects during the development of metabolic complications associated with obesity.
Collapse
Affiliation(s)
- Sophie Rome
- CarMeN Laboratory, INSERM/1060- INRAE/1397, University of Lyon, Lyon-Sud Faculty of Medicine, 69310 Pierre Benite, France
- Institute of Functional Genomic of Lyon (IGFL), ENS, CNRS UMR 5242, University of Lyon, 69364 Lyon, France
- Correspondence: (S.R.); (S.L.L.)
| | - Alexia Blandin
- Université de Nantes, CNRS, INSERM, L’Institut du Thorax, F-44000 Nantes, France;
- Univ Angers, SFR ICAT, F-49000 Angers, France
| | - Soazig Le Lay
- Université de Nantes, CNRS, INSERM, L’Institut du Thorax, F-44000 Nantes, France;
- Univ Angers, SFR ICAT, F-49000 Angers, France
- Correspondence: (S.R.); (S.L.L.)
| |
Collapse
|
6
|
Verma R, Kaur J. Expression of barley oxalate oxidase confers resistance against Sclerotinia sclerotiorum in transgenic Brassica juncea cv Varuna. Transgenic Res 2021; 30:143-154. [PMID: 33527156 DOI: 10.1007/s11248-021-00234-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/21/2021] [Indexed: 11/26/2022]
Abstract
Sclerotinia Stem Rot (SSR) caused by the oxalic acid (OA)-secreting necrotrophic fungal pathogen Sclerotinia sclerotiorum, causes significant yields losses in the crop Brassica sps. Oxalate oxidase (OxO) can metabolize OA to CO2 and H2O2. Degradation of OA during the early phase of fungal-host interaction can interfere with the fungal infection and establishment processes. The present study demonstrates the potential of barley oxalate oxidase (BOxO) gene in conferring stable resistance against stem rot in a productive and highly susceptible Brassica juncea cv Varuna under field conditions. Four stable, independent, single-copy transgenic lines (B16, B17, B18, and B53) exhibited a significant reduction in the rate of lesion expansion i.e. 11-26%, 39-47%, and 24-35% reproducibly over the three-generation i.e. T2, T3, and T4 respectively. The enhanced resistance in the transgenic lines correlated with high OxO activity, accumulation of higher levels of H2O2, and robust activation of defense responsive genes upon infection by S. sclerotiorum.
Collapse
Affiliation(s)
- Rashmi Verma
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
7
|
Yang Z, Sun H, Su S, Nan X, Li K, Jin X, Jin G, Li Z, Lu D. Tsantan Sumtang Restored Right Ventricular Function in Chronic Hypoxia-Induced Pulmonary Hypertension Rats. Front Pharmacol 2021; 11:607384. [PMID: 33536917 PMCID: PMC7848122 DOI: 10.3389/fphar.2020.607384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Tsantan Sumtang originated from Four Tantras, which consisted of Choerospondias axillaris (Roxb.) B. L. Burtt and A. W. Hill, Santalum album L., and Myristica fragrans Houtt. The three herbs are in ratio 1:1:1. This medication is widely used for cardiovascular diseases. Aims: The purpose of this study was to explore the effect of Tsantan Sumtang on right ventricular (RV) function in hypoxia-induced pulmonary hypertension (HPH) rats and investigate the underlying mechanism. Methods: Sixty male Sprague-Dawley (SD) rats were divided into control, hypoxia, and hypoxia + Tsantan Sumtang (1.0, 1.25, and 1.5 g•kg−1•d−1) groups. Chronic hypoxia was induced by putting the rats inside a hypobaric chamber for four weeks and adjusting the inner pressure and oxygen content to match an altitude of 4500 m. Echocardiography was used to assess RV function and right ventricular-pulmonary arterial (RV-PA) coupling. The physiological parameters of the animals were also evaluated. Morphological characteristics of RV were assessed by hematoxylin and eosin (H&E) staining and TEM. Masson’s trichrome staining, immunohistochemical staining, western blotting, and TUNEL assay were used to assess fibrosis and apoptosis levels. The antioxidant and anti-apoptosis properties of Tsantan Sumtang were also evaluated. The effect of Tsantan Sumtang on ROCK signaling pathway was evaluated using real-time quantitative PCR and western blotting. Results: We established an HPH rat model as indicated by the significant increases in the physiological parameters of the rats. Tsantan Sumtang showed a significant cardiac-protective function and an improved effect on RV-PA coupling. Moreover, Tsantan Sumtang treatment inhibited fibrosis and alleviated apoptosis and oxidative stress in RV. In terms of mechanism, Tsantan Sumtang reduced the expression of ROCK (ROCK1, ROCK2) in RV, inhibited cardiac remodeling-related transcription factors (NFATc3, P-STAT3), and regulated apoptosis-related proteins. Conclusion: Tsantan Sumtang was able to restore RV function, improve RV-PA coupling, recover hemodynamic and hematological indexes, and protect RV against structural maladaptive remodeling in the HPH rats. These findings demonstrated that Tsantan Sumtang protects the function of RV in HPH rats. The antioxidant and anti-apoptosis properties of Tsantan Sumtang may be responsible for inhibiting the ROCK signaling pathway.
Collapse
Affiliation(s)
- Zhanting Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Haixia Sun
- Department of Cardiac Ultrasound, Qinghai Provincial People's Hospital, Xining, China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, China
| | - Xingmei Nan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ke Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Xueqin Jin
- Laboratory Animal Center, Ningxia Medical University, Ningxia, China
| | - Guoen Jin
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| |
Collapse
|
8
|
Cabeza L, Perazzoli G, Peña M, Cepero A, Luque C, Melguizo C, Prados J. Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Control Release 2020; 327:296-315. [PMID: 32814093 DOI: 10.1016/j.jconrel.2020.08.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles of nanometric size secreted by cells to communicate with other cells, either nearby or remotely. Their physicochemical properties make them a promising nanomedicine for drug transport and release in cancer therapy. In this review, we present the different types and biogenesis of EVs and highlight the importance of adequately selecting the cell of origin in cancer therapy. Furthermore, the main methodologies followed for the isolation of EVs and drug loading, as well as the modification and functionalization of these vesicles to generate EV-based nanocarriers are discussed. Finally, we review some of the main studies using drug-loaded exosomes in tumor therapy both in in vitro and in vivo models (even in resistant tumors). These investigations show promising results, achieving significant improvement in the antitumor effect of drugs in most cases. However, the number of clinical trials and patents based on these nanoformulations is still low, thus further research is still warranted in this area.
Collapse
Affiliation(s)
- Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|