1
|
Kopij G, Kiezun M, Dobrzyn K, Zaobidna E, Zarzecka B, Rak A, Kaminski T, Kaminska B, Smolinska N. Visfatin Affects the Transcriptome of Porcine Luteal Cells during Early Pregnancy. Int J Mol Sci 2024; 25:2339. [PMID: 38397019 PMCID: PMC10889815 DOI: 10.3390/ijms25042339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Kaminska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| |
Collapse
|
2
|
Vancheri C, Morini E, Prandi FR, Alkhoury E, Celotto R, Romeo F, Novelli G, Amati F. Two RECK Splice Variants (Long and Short) Are Differentially Expressed in Patients with Stable and Unstable Coronary Artery Disease: A Pilot Study. Genes (Basel) 2021; 12:genes12060939. [PMID: 34205376 PMCID: PMC8234100 DOI: 10.3390/genes12060939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Primary prevention is crucial for coronary heart disease (CAD) and the identification of new reliable biomarkers might help risk stratification or predict adverse coronary events. Alternative splicing (AS) is a less investigated genetic factors implicated in CAD etiology. We performed an RNA-seq study on PBMCs from CAD patients and control subjects (CTR) and observed 113 differentially regulated AS events (24 up and 89 downregulated) in 86 genes. The RECK (Reversion-inducing-cysteine-rich protein with Kazal motifs) gene was further analyzed in a larger case study (24 CTR subjects, 72 CAD and 32 AMI patients) for its Splicing-Index FC (FC = −2.64; p = 0.0217), the AS event involving an exon (exon 18), and its role in vascular inflammation and remodeling. We observed a significant downregulation of Long RECK splice variant (containing exon 18) in PBMCs of AMI compared to CTR subjects (FC = −3.3; p < 0.005). Interestingly, the Short RECK splice variant (lacking exon 18) was under-expressed in AMI compared to both CTR (FC = −4.5; p < 0.0001) and CAD patients (FC = −4.2; p < 0.0001). A ROC curve, constructed combining Long and Short RECK expression data, shows an AUC = 0.81 (p < 0.001) to distinguish AMI from stable CAD patients. A significant negative correlation between Long RECK and triglycerides in CTR group and a positive correlation in the AMI group was found. The combined evaluation of Long and Short RECK expression levels is a potential genomic biomarker for the discrimination of AMI from CAD patients. Our results underline the relevance of deeper studies on the expression of these two splice variants to elucidate their functional role in CAD development and progression.
Collapse
Affiliation(s)
- Chiara Vancheri
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Elena Morini
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Francesca Romana Prandi
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Elie Alkhoury
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Roberto Celotto
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Francesco Romeo
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
- Unicamillus International Medical University, 00131 Rome, Italy
| | - Giuseppe Novelli
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Medical Genetics Laboratories, Tor Vergata University Hospital, PTV, 00133 Rome, Italy
- Neuromed IRCCS Institute, 86077 Pozzilli, Italy
- School of Medicine, Reno University of Nevada, Reno, NV 1664, USA
| | - Francesca Amati
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Department for the Promotion of Human Science and Quality of Life, University San Raffaele, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
3
|
The alternatively spliced RECK transcript variant 3 is a predictor of poor survival for melanoma patients being upregulated in aggressive cell lines and modulating MMP gene expression in vitro. Melanoma Res 2021; 30:223-234. [PMID: 31764436 DOI: 10.1097/cmr.0000000000000650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The reversion-inducing cysteine-rich protein with kazal motifs (RECK) gene was described as a tumor suppressor gene two decades ago. Recently, novel alternatively spliced products of this gene have been identified. Of these, the transcript variant 3 (RECKVar3) was shown to display tumor-facilitating effects in astrocytoma cells in vitro, with a higher RECKVar3/canonical RECK expression ratio being correlated with lower survival rates of patients. However, the regulatory mechanisms through which the cell controls the production and maintenance of these alternative transcripts, as well as their expression in other tumor types, remain elusive. Thus, the aim of this study is to investigate the role of the alternatively spliced transcripts from the RECK gene in melanoma progression as well as their regulation mechanism. To this end, we analyzed data from the Cancer Genome Atlas network and experimental data obtained from a panel of cell lines to show that high levels of RECKVar3 are predictive of poor survival. We also show that the MAPK and PI3K signaling pathways clearly play a role in determining the alternative-to-canonical ratio in vitro. Finally, we show that overexpression of the RECKVar3 protein upregulates matrix metalloproteinases (MMP)-9 and MMP-14 mRNA, while downregulating their inhibitor, tissue inhibitor of metalloproteinase (TIMP)3, and that RECKVar3-specific knockdown in the 1205Lu melanoma cell line hampered upregulation of the MMP9 mRNA promoted by the MEK1/2 inhibitor U0126. Taken together, our data complement the evidence that the RECK gene has a dual role in cancer, contributing to better understanding of the signaling cues, which dictate the melanoma invasive potential.
Collapse
|
4
|
Liu Z, Liu H, Yu D, Gao J, Ruan B, Long R. Downregulation of miR‑29b‑3p promotes α‑tubulin deacetylation by targeting the interaction of matrix metalloproteinase‑9 with integrin β1 in nasal polyps. Int J Mol Med 2021; 48:126. [PMID: 33982786 PMCID: PMC8128418 DOI: 10.3892/ijmm.2021.4959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase (MMP)‑9 is a key enzyme responsible for extracellular matrix degradation and contributes to the progressive histological changes observed in lower respiratory tract infections. Integrin β1 and α‑tubulin are potential MMP‑9‑interacting proteins, and microRNA (miR)‑29b‑3p can regulate MMP‑9 expression. MMP‑9 is highly expressed in chronic rhinosinusitis with nasal polyps (CRSwNPs), regardless of its effects on miR‑29b‑3p, integrin β1 and α‑tubulin expression. In the present study, samples from 100 patients with CRSwNPs were examined via reverse transcription‑quantitative PCR to assess the mRNA expression of miR‑29b‑3p, and western blotting was performed to assess the protein expression of MMP‑2, MMP‑9, acetyl‑α‑tubulin, integrin β1 and tissue inhibitor of metalloproteinase 1 (TIMP‑1). A dual‑luciferase reporter assay was used to verify the direct binding of miR‑29b‑3p and MMP‑2/MMP‑9. Co‑immunoprecipitation (Co‑IP) and GST pull‑down assays showed that integrin β1 and α‑tubulin were MMP‑9‑interacting proteins. Cell viability, apoptosis and inflammatory cytokine levels were determined via a Cell Counting Kit‑8 assay, flow cytometry and ELISA, respectively. miR‑29b‑3p expression was found to be positively correlated with MMP‑2 and MMP‑9 expression. Whereas, TIMP‑1 expression was negatively correlated with MMP‑2 and MMP‑9 expression. The dual‑luciferase assay revealed that miR‑29b‑3p targeted the 3' untranslated region of MMP‑2/MMP‑9. The Co‑IP and GST pull‑down assays showed that MMP‑9 could directly bind to integrin β1 and indirectly bind to α‑tubulin. Finally, the overexpression of miR‑29b‑3p decreased the expression of MMP‑9 and increased the levels of acetyl‑α‑tubulin. By contrast, the knockdown of miR‑29b‑3p increased the expression of MMP‑9 and decreased the levels of acetyl‑α‑tubulin. Additionally, MMP‑9 expression was found to be negatively correlated with acetyl‑α‑tubulin expression. Of note, the expression of integrin β1 did not change following the overexpression and knockdown of MMP‑9. Finally, the overexpression of miR‑29b‑3p not only decreased MMP‑9 expression, but also alleviated lipopolysaccharide‑induced inflammation in NP69 cells. The results showed that the downregulation of miR‑29b‑3p promoted α‑tubulin deacetylation by increasing the number of MMP‑9‑integrin β1 complexes in CRSwNPs, thus targeting miR‑29b‑3p/MMP‑9 may be a potential novel strategy for the clinical treatment of CRSwNPs.
Collapse
Affiliation(s)
- Zhuohui Liu
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Haoyu Liu
- Department of Otolaryngology, The First People's Hospital of Qujing, Qujing, Yunnan 655000, P.R. China
| | - Deshun Yu
- Department of Otolaryngology, Affiliated Hospital of Dali University, Dali, Yunnan 671000, P.R. China
| | - Jingyu Gao
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Biao Ruan
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ruiqing Long
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
5
|
Kobayashi M, Wakabayashi I, Suzuki Y, Fujiwara K, Nakayama M, Watabe T, Sato Y. Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. Angiogenesis 2020; 24:159-176. [PMID: 33052495 DOI: 10.1007/s10456-020-09754-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023]
Abstract
Receptor endocytosis is crucial for integrating extracellular stimuli of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), into the cell via signal transduction. VEGF not only triggers various angiogenic events including endothelial cell (EC) migration, but also induces the expression of negative regulators of angiogenesis, including vasohibin-1 (VASH1). While we have previously reported that VASH1 inhibits angiogenesis in vitro and in vivo, its mode of action on EC behavior remains elusive. Recently VASH1 was shown to have tubulin carboxypeptidase (TCP) activity, mediating the post-translational modification of microtubules (MTs) by detyrosination of α-tubulin within cells. However, the role of VASH1 TCP activity in angiogenesis has not yet been clarified. Here, we showed that VASH1 detyrosinated α-tubulin in ECs and suppressed in vitro and in vivo angiogenesis. In cultured ECs, VASH1 impaired endocytosis and trafficking of VEGF receptor 2 (VEGFR2), which resulted in the decreased signal transduction and EC migration. These effects of VASH1 could be restored by tubulin tyrosine ligase (TTL) in ECs, suggesting that detyrosination of α-tubulin negatively regulates angiogenesis. Furthermore, we found that detyrosinated tubulin-rich MTs were not adequate as trafficking rails for VEGFR2 endocytosis. Consistent with these results, inhibition of TCP activity of VASH1 led to the inhibition of VASH1-mediated suppression of VEGF-induced signals, EC migration, and in vivo angiogenesis. Our results indicate a novel mechanism of VASH1-mediated inhibition of pro-angiogenic factor receptor trafficking via modification of MTs.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan. .,Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.
| | - Ikumi Wakabayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan. .,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|