1
|
Rigoulet M, Bouchez CL, Paumard P, Ransac S, Cuvellier S, Duvezin-Caubet S, Mazat JP, Devin A. Cell energy metabolism: An update. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148276. [PMID: 32717222 DOI: 10.1016/j.bbabio.2020.148276] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and maintenance processes. During growth, both ATP/ADP and NADH/NAD+ molecules play a key role. Cell energy metabolism hence refers to metabolic pathways involved in ATP synthesis linked to NADH turnover. Two main pathways are thus involved in cell energy metabolism: glycolysis/fermentation and oxidative phosphorylation. Glycolysis and mitochondrial oxidative phosphorylation are intertwined through thermodynamic and kinetic constraints that are reviewed herein. Further, our current knowledge of short-term and long term regulation of cell energy metabolism will be reviewed using examples such as the Crabtree and the Warburg effect.
Collapse
Affiliation(s)
- M Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - C L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - P Paumard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - J P Mazat
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - A Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
2
|
Georges P, Boza-Moran MG, Gide J, Pêche GA, Forêt B, Bayot A, Rustin P, Peschanski M, Martinat C, Aubry L. Induced pluripotent stem cells-derived neurons from patients with Friedreich ataxia exhibit differential sensitivity to resveratrol and nicotinamide. Sci Rep 2019; 9:14568. [PMID: 31601825 PMCID: PMC6787055 DOI: 10.1038/s41598-019-49870-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Translation of pharmacological results from in vitro cell testing to clinical trials is challenging. One of the causes that may underlie these discrepant results is the lack of the phenotypic or species-specific relevance of the tested cells; today, this lack of relevance may be reduced by relying on cells differentiated from human pluripotent stem cells. To analyse the benefits provided by this approach, we chose to focus on Friedreich ataxia, a neurodegenerative condition for which the recent clinical testing of two compounds was not successful. These compounds, namely, resveratrol and nicotinamide, were selected because they had been shown to stimulate the expression of frataxin in fibroblasts and lymphoblastoid cells. Our results indicated that these compounds failed to do so in iPSC-derived neurons generated from two patients with Friedreich ataxia. By comparing the effects of both molecules on different cell types that may be considered to be non-relevant for the disease, such as fibroblasts, or more relevant to the disease, such as neurons differentiated from iPSCs, a differential response was observed; this response suggests the importance of developing more predictive in vitro systems for drug discovery. Our results demonstrate the value of utilizing human iPSCs early in drug discovery to improve translational predictability.
Collapse
Affiliation(s)
| | - Maria-Gabriela Boza-Moran
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | | | - Georges Arielle Pêche
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | | | - Aurélien Bayot
- CNRS UMR 3691, Institut Pasteur, Mitochondrial Biology Group, Paris, France
| | - Pierre Rustin
- Hôpital Robert Debré, INSERM UMR, 1141, Paris, France
| | - Marc Peschanski
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | - Cécile Martinat
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France.
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France.
| |
Collapse
|
3
|
Chen J, Chen X, Yao J, Li M, Yang X. The combination of Decitabine and EPZ-6438 effectively facilitate adipogenic differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Biochem Biophys Res Commun 2019; 516:307-312. [PMID: 31256938 DOI: 10.1016/j.bbrc.2019.06.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/16/2019] [Indexed: 12/16/2022]
Abstract
As a novel type of mesenchymal stem cell, induced pluripotent stem cell-derived mesenchymal stem cells (iPMSCs) have huge potential for cell therapy. iPMSCs exhibited the typical characteristics of MSCs, whereas the tri-lineage differentiation potential is limited, especially the adipogenic propensity. Here, to reveal the molecular mechanism we carried out the epigenetic comparisons between the iPMSCs and the bone marrow-derived mesenchymal stem cells (BMSCs) and embryonic stem cell-derived mesenchymal stem cells (EMSCs). We found that the iPMSCs was significantly higher than the BMSCs in terms of genome-wide DNA methylation. Meanwhile, the adipogenic gene PPARγ promoter region existed hypermethylation. In addition, compared with EMSCs and BMSCs, iPMSCs had significant differences in the histones epigenetic modification of methylation and acetylation, especially high levels of histone 27 lysine trimethylation (H3K27me3). Furthermore, the epigenetic modifiers Decitabine and EPZ6438 effectively upregulated the gene expression of PPARγ and promoted the adipogenic differentiation of iPMSCs via chromatin remodeling. Taken together, our findings set new metrics to the applications for improving the efficiency and the therapeutic potential of iPMSCs.
Collapse
Affiliation(s)
- Juan Chen
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, PR China
| | - Xuan Chen
- Fujian Institute of Traditional Chinese Medicine, Fuzhou, 350001, PR China
| | - Jianfeng Yao
- Quanzhou Maternity & Child Healthcare Hospital, Quanzhou, 362000, PR China
| | - Ming Li
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, PR China
| | - Xiaoyu Yang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, PR China; Fuzhou Maternity & Child Healthcare Hospital, Fuzhou, 350005, PR China.
| |
Collapse
|