1
|
Destefanis E, Sighel D, Dalfovo D, Gilmozzi R, Broso F, Cappannini A, Bujnicki J, Romanel A, Dassi E, Quattrone A. The three YTHDF paralogs and VIRMA are strong cross-histotype tumor driver candidates among m 6A core genes. NAR Cancer 2024; 6:zcae040. [PMID: 39411658 PMCID: PMC11474903 DOI: 10.1093/narcan/zcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in mRNAs. Despite accumulating evidence for the profound impact of m6A on cancer biology, there are conflicting reports that alterations in genes encoding the m6A machinery proteins can either promote or suppress cancer, even in the same tumor type. Using data from The Cancer Genome Atlas, we performed a pan-cancer investigation of 15 m6A core factors in nearly 10000 samples from 31 tumor types to reveal underlying cross-tumor patterns. Altered expression, largely driven by copy number variations at the chromosome arm level, results in the most common mode of dysregulation of these factors. YTHDF1, YTHDF2, YTHDF3 and VIRMA are the most frequently altered factors and the only ones to be uniquely altered when tumors are grouped according to the expression pattern of the m6A factors. These genes are also the only ones with coherent, pan-cancer predictive power for progression-free survival. On the contrary, METTL3, the most intensively studied m6A factor as a cancer target, shows much lower levels of alteration and no predictive power for patient survival. Therefore, we propose the non-enzymatic YTHDF and VIRMA genes as preferred subjects to dissect the role of m6A in cancer and as priority cancer targets.
Collapse
Affiliation(s)
- Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Davide Dalfovo
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Riccardo Gilmozzi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
2
|
Woodcock CL, Alsaleem M, Toss MS, Lothion-Roy J, Harris AE, Jeyapalan JN, Blatt N, Rizvanov AA, Miftakhova RR, Kariri YA, Madhusudan S, Green AR, Rutland CS, Fray RG, Rakha EA, Mongan NP. The role of the ALKBH5 RNA demethylase in invasive breast cancer. Discov Oncol 2024; 15:343. [PMID: 39127986 PMCID: PMC11317455 DOI: 10.1007/s12672-024-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most common internal RNA modification and is involved in regulation of RNA and protein expression. AlkB family member 5 (ALKBH5) is a m6A demethylase. Given the important role of m6A in biological mechanisms, m6A and its regulators, have been implicated in many disease processes, including cancer. However, the contribution of ALKBH5 to invasive breast cancer (BC) remains poorly understood. The aim of this study was to evaluate the clinicopathological value of ALKBH5 in BC. METHODS Publicly available data were used to investigate ALKBH5 mRNA alterations, prognostic significance, and association with clinical parameters at the genomic and transcriptomic level. Differentially expressed genes (DEGs) and enriched pathways with low or high ALKBH5 expression were investigated. Immunohistochemistry (IHC) was used to assess ALKBH5 protein expression in a large well-characterised BC series (n = 1327) to determine the clinical significance and association of ALKBH5 expression. RESULTS Reduced ALKBH5 mRNA expression was significantly associated with poor prognosis and unfavourable clinical parameters. ALKBH5 gene harboured few mutations and/or copy number alternations, but low ALKBH5 mRNA expression was seen. Patients with low ALKBH5 mRNA expression had a number of differentially expressed genes and enriched pathways, including the cytokine-cytokine receptor interaction pathway. Low ALKBH5 protein expression was significantly associated with unfavourable clinical parameters associated with tumour progression including larger tumour size and worse Nottingham Prognostic Index group. CONCLUSION This study implicates ALKBH5 in BC and highlights the need for further functional studies to decipher the role of ALKBH5 and RNA m6A methylation in BC progression.
Collapse
Affiliation(s)
- Corinne L Woodcock
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Jennifer Lothion-Roy
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Anna E Harris
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jennie N Jeyapalan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Nataliya Blatt
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Albert A Rizvanov
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Regina R Miftakhova
- Institute for Fundamental Medicine and Science, Kazan Federal University, Kazan, Tatarstan, Russia
| | - Yousif A Kariri
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University 33, 11961, Shaqra, Saudi Arabia
| | - Srinivasan Madhusudan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
| | - Catrin S Rutland
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Rupert G Fray
- School of Biosciences, Plant Science Division, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, School of Medicine, Academic Unit for Translational Medical Sciences, University of Nottingham, Nottingham, UK
- Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
- Pathology Department, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Nigel P Mongan
- University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Jiang L, Liang R, Luo Q, Chen Z, Song G. Targeting FTO suppresses hepatocellular carcinoma by inhibiting ERBB3 and TUBB4A expression. Biochem Pharmacol 2024; 226:116375. [PMID: 38906227 DOI: 10.1016/j.bcp.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase and plays critical oncogenic roles in multiple cancers. Here we show that FTO is an effective target in hepatocellular carcinoma (HCC). FTO is highly expressed in patients with HCC. Genetic depletion of Fto dramatically attenuated HCC progression in mice. Pharmacological inhibition of FTO by FB23/FB23-2 markedly suppressed the proliferation and migration of HCC cell lines in vitro and inhibited HCC tumorigenicity in xeno-transplanted mice. Mechanistically, FB23-2 suppressed the expression of Erb-b2 receptor tyrosine kinase 3 (ERBB3) and human tubulin beta class Iva (TUBB4A) by increasing the m6A level in these mRNA transcripts. The decrease in ERBB3 expression resulted in the inhibition of Akt-mTOR signaling, which subsequently impaired the proliferation and survival of HCC cells. Moreover, FB23-2 disturbed the stability of the tubulin cytoskeleton, whereas overexpression of TUBB4A rescued the migration of HCC cells. Collectively, our study demonstrates that FTO plays a critical role in HCC by maintaining the proliferation and migration of cells and highlights the potential of FTO inhibitors for targeting HCC.
Collapse
Affiliation(s)
- Lingli Jiang
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Rui Liang
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qing Luo
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Guanbin Song
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Li L, Yang L, Shen L, Zhao Y, Wang L, Zhang H. Fat Mass and Obesity-Associated Protein Regulates Granulosa Cell Aging by Targeting Matrix Metalloproteinase-2 Gene Via an N6-Methyladenosine-YT521-B Homology Domain Family Member 2-Dependent Pathway in Aged Mice. Reprod Sci 2024:10.1007/s43032-024-01632-6. [PMID: 38995602 DOI: 10.1007/s43032-024-01632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024]
Abstract
In this study, we aimed to investigate the molecular mechanisms of RNA N6-methyladenosine (m6A) modification and how its associated proteins affect granulosa cell aging. A granulosa cell senescence model was constructed to detect the differences in total RNA m6A modification levels and the expression of related enzymes. Changes in downstream molecular expression and the effects on the cellular senescence phenotype were explored by repeatedly knocking down and overexpressing the key genes fat mass and obesity-associated protein (FTO), YT521-B homology domain family member 2 (YTHDF2), and matrix metalloproteinase-2 (MMP2). There was an increased total RNA m6A modification and decreased expression of the demethylase FTO and target gene MMP2 in senescent granulosa cells. FTO and MMP2 knockdown promoted granulosa cell senescence, whereas FTO and MMP2 overexpression retarded it. YTHDF2 and FTO can bind to the messenger RNA of MMP2. The extracellular signal-regulated kinase (ERK) pathway, which is downstream of MMP2, retarded the process of granulosa cell senescence through ERK activators. In granulosa cells, FTO can regulate the expression of MMP2 in an m6A-YTHDF2-dependent manner, influencing the activation status of the ERK pathway and contributing to the aging process of granulosa cells.
Collapse
Affiliation(s)
- Linshuang Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Le Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Lin Shen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Yiqing Zhao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
5
|
Hu Q, Yin J, Zhao S, Wang Y, Shi R, Yan K, Huang S. ZFHX3 acts as a tumor suppressor in prostate cancer by targeting FTO-mediated m 6A demethylation. Cell Death Discov 2024; 10:284. [PMID: 38871709 DOI: 10.1038/s41420-024-02060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Zinc-finger homeobox 3 (ZFHX3, also known as ATBF1) suppresses prostatic tumorigenesis. ZFHX3 is frequently found to have numerous deletions in human prostate cancer (PCa). However, the underlying molecular function of ZFHX3 during prostatic tumorigenesis is not well understood. N6-methyladenosine (m6A) modification in RNA plays a critical role in the development of cancers; however, the relationship between ZFHX3 and m6A modification is largely unknown in PCa. In this study, we found that ZFHX3 knockdown decreased total m6A levels through enhancing the transcriptional activity of FTO in PCa cells. Importantly, FTO inhibition suppressed cell proliferation and rescued the promoting function of ZFHX3 knockdown on cell proliferation. In vivo, we verified that FTO was upregulated and ZFHX3 was decreased in PCa patients and that a high level of ZFHX3 is indispensable for low FTO expression and is correlated with better patient survival. Through transcriptome sequencing and MeRIP sequencing, we revealed that E2F2 and CDKN2C were the direct targets of FTO-mediated m6A modification and ZFXH3 was required for the regulation of FTO on E2F2 and CDKN2C expression. Unexpectedly, we uncovered that ZFHX3 expression was in return regulated by FTO in an m6A-dependent way. These findings establish a novel crosstalk mechanism between ZFHX3 and FTO in prostatic tumorigenesis.
Collapse
Affiliation(s)
- Qingxia Hu
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Junling Yin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Sijie Zhao
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yibo Wang
- Shandong Provincial Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ruxue Shi
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Keqiang Yan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Shuhong Huang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Zhang X, Ma Y, Yu J, Su R, Wang X. Internal m 6 A and m 7 G RNA modifications in hematopoietic system and acute myeloid leukemia. Chin Med J (Engl) 2024; 137:1033-1043. [PMID: 38545694 PMCID: PMC11062654 DOI: 10.1097/cm9.0000000000003073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 05/03/2024] Open
Abstract
ABSTRACT Epitranscriptomics focuses on the RNA-modification-mediated post-transcriptional regulation of gene expression. The past decade has witnessed tremendous progress in our understanding of the landscapes and biological functions of RNA modifications, as prompted by the emergence of potent analytical approaches. The hematopoietic system provides a lifelong supply of blood cells, and gene expression is tightly controlled during the differentiation of hematopoietic stem cells (HSCs). The dysregulation of gene expression during hematopoiesis may lead to severe disorders, including acute myeloid leukemia (AML). Emerging evidence supports the involvement of the mRNA modification system in normal hematopoiesis and AML pathogenesis, which has led to the development of small-molecule inhibitors that target N6-methyladenosine (m 6 A) modification machinery as treatments. Here, we summarize the latest findings and our most up-to-date information on the roles of m 6 A and N7-methylguanine in both physiological and pathological conditions in the hematopoietic system. Furthermore, we will discuss the therapeutic potential and limitations of cancer treatments targeting m 6 A.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing 100005, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing 100005, China
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu,Sichuan 610052, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing 100005, China
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu,Sichuan 610052, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaoshuang Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing 100005, China
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu,Sichuan 610052, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
7
|
Ding H, Teng Y, Gao P, Zhang Q, Wang M, Yu Y, Fan Y, Zhu L. Construction of a prognostic model for lung adenocarcinoma based on m6A/m5C/m1A genes. Hum Mol Genet 2024; 33:563-582. [PMID: 38142284 DOI: 10.1093/hmg/ddad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Developing a prognostic model for lung adenocarcinoma (LUAD) that utilizes m6A/m5C/m1A genes holds immense importance in providing precise prognosis predictions for individuals. METHODS This study mined m6A/m5C/m1A-related differential genes in LUAD based on public databases, identified LUAD tumor subtypes based on these genes, and further built a risk prognostic model grounded in differential genes between subtypes. The immune status between high- and low-risk groups was investigated, and the distribution of feature genes in tumor immune cells was analyzed using single-cell analysis. Based on the expression levels of feature genes, a projection of chemotherapeutic and targeted drugs was made for individuals identified as high-risk. Ultimately, cell experiments were further verified. RESULTS The 6-gene risk prognosis model based on differential genes between tumor subtypes had good predictive performance. Individuals classified as low-risk exhibited a higher (P < 0.05) abundance of infiltrating immune cells. Feature genes were mainly distributed in tumor immune cells like CD4+T cells, CD8+T cells, and regulatory T cells. Four drugs with relatively low IC50 values were found in the high-risk group: Elesclomol, Pyrimethamine, Saracatinib, and Temsirolimus. In addition, four drugs with significant positive correlation (P < 0.001) between IC50 values and feature gene expression were found, including Alectinib, Estramustine, Brigatinib, and Elesclomol. The low expression of key gene NTSR1 reduced the IC50 value of irinotecan. CONCLUSION Based on the m6A/m5C/m1A-related genes in LUAD, LUAD patients were divided into 2 subtypes, and a m6A/m5C/m1A-related LUAD prognostic model was constructed to provide a reference for the prognosis prediction of LUAD.
Collapse
Affiliation(s)
- Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Yuanyuan Teng
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Ping Gao
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Qi Zhang
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Mengdi Wang
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Yi Yu
- Department of General Practice, Jiankang Road Community Health Service Center, NO. 239 Zhongshan East Road, Jingkou District, Zhenjiang City, Jiangsu Province 212008, China
| | - Yueping Fan
- Department of Respiratory, Jurong Branch Hospital, Affiliated Hospital of Jiangsu University, NO. 8 Huayang South Road, Jurong City, Zhenjiang City, Jiangsu Province 212400, China
| | - Li Zhu
- Department of Nephrology, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| |
Collapse
|
8
|
Wang K, Mei Z, Zheng M, Liu X, Li D, Wang H. FTO-mediated autophagy inhibition promotes non-small cell lung cancer progression by reducing the stability of SESN2 mRNA. Heliyon 2024; 10:e27571. [PMID: 38495179 PMCID: PMC10943454 DOI: 10.1016/j.heliyon.2024.e27571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
The role of fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) demethylase, in non-small cell lung cancer (NSCLC) has recently received widespread attention. However the underlying mechanisms of FTO-mediated autophagy regulation in NSCLC progression remain elusive. In this study, we found that FTO was significantly upregulated in NSCLC, and downregulation of FTO suppressed the growth, invasion and migration of NSCLC cells by inducing autophagy. FTO knockdown resulted in elevated m6A levels in NSCLC cells. Methylated RNA immunoprecipitation sequencing showed that sestrin 2 (SESN2) was involved in m6A regulation during autophagy in NSCLC cells. Interestingly, m6A modifications in exon 9 of SESN2 regulated its stability. FTO deficiency promoted the binding of insulin-like growth factor 2 mRNA-binding protein 1 to SESN2 mRNA, enhancing its stability and elevating its protein expression. FTO inhibited autophagic flux by downregulating SESN2, thereby promoting the growth, invasion and migration of NSCLC cells. Besides, the mechanism by which FTO blocked SESN2-mediated autophagy activation was associated with the AMPK-mTOR signaling pathway. Taken together, these findings uncover an essential role of the FTO-autophagy-SESN2 axis in NSCLC progression.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Zhiqiang Mei
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Dabing Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
9
|
Ma S, Chen F, Lin C, Sun W, Wang D, Zhou S, Chang S, Lu Z, Zhang D. MiR-186-5p prevents hepatocellular carcinoma progression by targeting methyltransferase-like 3 that regulates m6A-mediated stabilization of follistatin-like 5. Heliyon 2024; 10:e26767. [PMID: 38463829 PMCID: PMC10920164 DOI: 10.1016/j.heliyon.2024.e26767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a multistep process involving sophisticated genetic, epigenetic, and transcriptional changes. However, studies on microRNA (miRNA)'s regulatory effects of N6-methyladenosine (m6A) modifications on HCC progression are limited. Methods Cell Counting Kit-8 (CCK-8), clone formation, and Transwell assays were used to investigate changes in cancer cell proliferation, invasion, and migration. RNA m6A levels were verified using methylated RNA immunoprecipitation. Luciferase reporter assay was used to study the potential binding between miRNAs and mRNA. A mouse tumor transplant model was established to study the changes in tumor progression. Results Follistatin-like 5 (FSTL5) was significantly downregulated in HCC and inhibited its further progression. Additionally, methyltransferase-like 3 (METTL3) reduced FSTL5 mRNA stability in an m6A-YTH domain family 2(YTHDF2)-dependent manner. Functional experiments revealed that METTL3 downregulation inhibited HCC progression by upregulating FSTL5 in vitro and in vivo. Luciferase reporter assay verified that miR-186-5p directly targets METTL3. Additionally, miR-186-5p inhibits the proliferation, migration, and invasion of HCC cells by downregulating METTL3 expression. Conclusions The miR-186-5p/METTL3/YTHDF2/FSTL5 axis may offer new directions for targeted HCC therapy.
Collapse
Affiliation(s)
- Shuoshuo Ma
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
- Liver Transplantation Center and Hepatobiliary and Pancreatic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangfang Chen
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Chuanle Lin
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Wanliang Sun
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Dongdong Wang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Shuo Zhou
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - ShiRu Chang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Zheng Lu
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Dengyong Zhang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
- The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology, Houston, USA
| |
Collapse
|
10
|
Liu XW, Zhao NN, Yuan HM, Li DL, Liu M, Zhang CY. Demethylation-activated light-up dual-color RNA aptamersensor for label-free detection of multiple demethylases in lung tissues. Biosens Bioelectron 2024; 247:115966. [PMID: 38147719 DOI: 10.1016/j.bios.2023.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Methylation is one of the most prevalent epigenetic modifications in natural organisms, and the processes of methylation and demethylation are closely associated with cell growth, differentiation, gene transcription and expression. Abnormal methylation may lead to various human diseases including cancers. Simultaneous analysis of multiple DNA demethylases remains a huge challenge due to the requirement of diverse substrate probes and scarcity of proper signal transduction strategies. Herein, we propose a sensitive and label-free method for simultaneous monitoring of multiple DNA demethylases on the basis of demethylation-activated light-up dual-color RNA aptamers. The presence of targets AlkB homologue-3 (ALKBH3) and fat mass and obesity-associated enzyme (FTO) erases the methyl group in DNA substrate probes, activating the ligation-mediate bidirectional transcription amplification reaction to produce enormous Spinach and Mango aptamers. The resulting RNA aptamers (i.e., Spinach and Mango aptamers) can bind with their cognate nonfluorescent fluorogens (DFHBI and TO1-biotin) to significantly improve the fluorescence signals. This aptamersensor shows high specificity and sensitivity with a limit of detection (LOD) of 8.50 × 10-14 M for ALKBH3 and 6.80 × 10-14 M for FTO, and it can apply to screen DNA demethylase inhibitors, evaluate DNA demethylase kinetic parameters, and simultaneously measure multiple endogenous DNA demethylases in a single cell. Importantly, this aptamersensor can accurately discriminate the expressions of ALKBH3 and FTO between healthy tissues and non-small cell lung cancer (NSCLC) patient tissues, offering a powerful platform for clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Xiao-Wen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Hui-Min Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
11
|
Zhang QC, Qian YM, Ren YH, Chen MM, Cao LM, Zheng SJ, Li BB, Wang M, Wu X, Xu K. Phenethyl isothiocyanate inhibits metastasis potential of non-small cell lung cancer cells through FTO mediated TLE1 m 6A modification. Acta Pharmacol Sin 2024; 45:619-632. [PMID: 37848553 PMCID: PMC10834501 DOI: 10.1038/s41401-023-01178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a prevalent RNA epigenetic modification, which plays a crucial role in tumor progression including metastasis. Isothiocyanates (ITCs) are natural compounds and inhibit the tumorigenesis of various cancers. Our previous studies show that ITCs inhibit the proliferation and metastasis of non-small cell lung cancer (NSCLC) cells, and have synergistic effects with chemotherapy drugs. In this study, we investigated the molecular mechanisms underlying the inhibitory effects of ITCs on cancer cell metastasis. We showed that phenethyl isothiocyanate (PEITC) dose-dependently inhibited the cell viability of both NSCLC cell lines H1299 and H226 with IC50 values of 17.6 and 15.2 μM, respectively. Furthermore, PEITC dose-dependently inhibited the invasion and migration of H1299 and H226 cells. We demonstrated that PEITC treatment dose-dependently increased m6A methylation levels and inhibited the expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in H1299 and H226 cells. Knockdown of FTO significantly increased m6A methylation in H1299 and H226 cells, impaired their abilities of invasion and migration in vitro, and enhanced the inhibition of PEITC on tumor growth in vivo. Overexpression of FTO promoted the migration of NSCLC cells, and also mitigated the inhibitory effect of PEITC on migration of NSCLC cells. Furthermore, we found that FTO regulated the mRNA m6A modification of a transcriptional co-repressor Transducin-Like Enhancer of split-1 (TLE1) and further affected its stability and expression. TCGA database analysis revealed TLE1 was upregulated in NSCLC tissues compared to normal tissues, which might be correlated with the metastasis status. Moreover, we showed that PEITC suppressed the migration of NSCLC cells by inhibiting TLE1 expression and downstream Akt/NF-κB pathway. This study reveals a novel mechanism underlying ITC's inhibitory effect on metastasis of lung cancer cells, and provided valuable information for developing new therapeutics for lung cancer by targeting m6A methylation.
Collapse
Affiliation(s)
- Qi-Cheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yong-Mei Qian
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ying-Hui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Meng-Meng Chen
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Li-Min Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Si-Jia Zheng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bing-Bing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
12
|
Fu Y, Liu L, Wu H, Zheng Y, Zhan H, Li L. LncRNA GAS5 regulated by FTO-mediated m6A demethylation promotes autophagic cell death in NSCLC by targeting UPF1/BRD4 axis. Mol Cell Biochem 2024; 479:553-566. [PMID: 37120495 DOI: 10.1007/s11010-023-04748-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) has been shown to be a regulator for many cancers, including non-small cell lung cancer (NSCLC). Therefore, its role and mechanism in the process of NSCLC deserve to be further revealed. The expression levels of GAS5, fat mass and obesity-associated protein (FTO) and bromodomain-containing protein 4 (BRD4) were detected by quantitative real-time PCR. Western blot analysis was used to examine the protein expression of FTO, BRD4, up-frameshift protein 1 (UPF1) and autophagy-related markers. Methylated RNA immunoprecipitation was used to assess the m6A level of GAS5 regulated by FTO. Cell proliferation and apoptosis were determined using MTT assay, EdU assay and flow cytometry. Autophagy ability was assessed by immunofluorescence staining and transmission electron microscope. Xenograft tumor model was constructed to explore the effects of FTO and GAS5 on NSCLC tumor growth in vivo. The interaction between UPF1 and GAS5 or BRD4 was confirmed by pull-down assay, RIP assay, dual-luciferase reporter assay, and chromatin immunoprecipitation. Fluorescent in situ hybridization was used to analyze the co-localization of GAS5 and UPF1. Actinomycin D treatment was employed to evaluate BRD4 mRNA stability. GAS5 was downregulated in NSCLC tissues and was associated with poor prognosis in NSCLC patients. FTO was highly expressed in NSCLC, and it inhibited GAS5 expression by reducing GAS5 m6A methylation level. GAS5 suppressed by FTO could promote the autophagic death of NSCLC cells in vitro and inhibit NSCLC tumor growth in vivo. In addition, GAS5 was able to interact with UPF1 to reduce the mRNA stability of BRD4. Knockdown of BRD4 reversed the inhibition of GAS5 or UPF1 silencing on the autophagic cell death of NSCLC. The findings of the study showed that lncRNA GAS5 mediated by FTO could contribute to the autophagic cell death of NSCLC by interacting with UPF1 to reduce BRD4 mRNA stability, suggesting that GAS5 might be a vital therapy target for NSCLC progression.
Collapse
Affiliation(s)
- Yihui Fu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, People's Republic of China
| | - Lirong Liu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, People's Republic of China
| | - Haihong Wu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, People's Republic of China
| | - Yamei Zheng
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, People's Republic of China
| | - Huijuan Zhan
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, People's Republic of China
| | - Liang Li
- Department of Thoracic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China.
| |
Collapse
|
13
|
Chen XF, Gong C. FTO in Lung Cancer: Its Progression and Therapeutic Potential. Comb Chem High Throughput Screen 2024; 27:2301-2307. [PMID: 38485681 DOI: 10.2174/0113862073281598240227072839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 08/21/2024]
Abstract
One of the most fatal and frequent malignancies on the planet is lung cancer. Its occurrence and development are the results of multifactorial and multigenic interactions. In recent years, RNA N6-methyladenosine transferase (FTO) has gained significant attention in the field of oncology. FTO is the first RNA demethylase to be found to control target mRNA demethylation. The growth, proliferation, and metastasis of tumor cells are greatly influenced by FTO. Recent studies have found that imbalanced m6A methylation regulatory proteins can induce disruption of downstream RNA metabolism, strongly affecting tumor development. This paper provides an overview of the relationship between FTO and lung cancer, discussing the mechanisms by which FTO is involved in lung cancer and its potential clinical applications.
Collapse
Affiliation(s)
- Xue-Fen Chen
- Geriatrics Respiratory Medicine Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chen Gong
- Geriatrics Respiratory Medicine Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Yu M, Ji W, Yang X, Tian K, Ma X, Yu S, Chen L, Zhao X. The role of m6A demethylases in lung cancer: diagnostic and therapeutic implications. Front Immunol 2023; 14:1279735. [PMID: 38094306 PMCID: PMC10716209 DOI: 10.3389/fimmu.2023.1279735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
m6A is the most prevalent internal modification of eukaryotic mRNA, and plays a crucial role in tumorigenesis and various other biological processes. Lung cancer is a common primary malignant tumor of the lungs, which involves multiple factors in its occurrence and progression. Currently, only the demethylases FTO and ALKBH5 have been identified as associated with m6A modification. These demethylases play a crucial role in regulating the growth and invasion of lung cancer cells by removing methyl groups, thereby influencing stability and translation efficiency of mRNA. Furthermore, they participate in essential biological signaling pathways, making them potential targets for intervention in lung cancer treatment. Here we provides an overview of the involvement of m6A demethylase in lung cancer, as well as their potential application in the diagnosis, prognosis and treatment of the disease.
Collapse
Affiliation(s)
- Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenqian Ji
- College of International Studies, Southwest University, Chongqing, China
| | - Xu Yang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Kai Tian
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People’s Hospital Affiliated Nantong Hospital of Nantong University, Nantong, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
16
|
Gao L, Wang A, Chen Y, Cai X, Li Y, Zhao J, Zhang Y, Zhang W, Zhu J, Zeng Y, Liu Z, Huang JA. FTO facilitates cancer metastasis by modifying the m 6A level of FAP to induce integrin/FAK signaling in non-small cell lung cancer. Cell Commun Signal 2023; 21:311. [PMID: 37919739 PMCID: PMC10623768 DOI: 10.1186/s12964-023-01343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Emerging evidence suggests the critical roles of N6-methyladenosine (m6A) RNA modification in tumorigenesis and tumor progression. However, the role of m6A in non-small cell lung cancer (NSCLC) is still unclear. This study aimed to explore the role of the m6A demethylase fat mass and obesity-associated protein (FTO) in the tumor metastasis of NSCLC. METHODS A human m6A epitranscriptomic microarray analysis was used to identify downstream targets of FTO. Quantitative real-time PCR (qRT‒PCR) and western blotting were employed to evaluate the expression levels of FTO and FAP in NSCLC cell lines and tissues. Gain-of-function and loss-of-function assays were conducted in vivo and in vitro to assess the effects of FTO and FAP on NSCLC metastasis. M6A-RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), luciferase reporter assays, and RNA stability assays were used to explore the mechanism of FTO action. Co-immunoprecipitation (co-IP) assays were used to determine the mechanism of FAP in NSCLC metastasis. RESULTS FTO was upregulated and predicted poor prognosis in patients with NSCLC. FTO promoted cell migration and invasion in NSCLC, and the FAK inhibitor defactinib (VS6063) suppressed NSCLC metastasis induced by overexpression of FTO. Mechanistically, FTO facilitated NSCLC metastasis by modifying the m6A level of FAP in a YTHDF2-dependent manner. Moreover, FTO-mediated metastasis formation depended on the interactions between FAP and integrin family members, which further activated the FAK signaling. CONCLUSION Our current findings provided valuable insights into the role of FTO-mediated m6A demethylation modification in NSCLC metastasis. FTO was identified as a contributor to NSCLC metastasis through the activation of the FAP/integrin/FAK signaling, which may be a potential therapeutic target for NSCLC. Video Abstract.
Collapse
Affiliation(s)
- Lirong Gao
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuling Chen
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Xin Cai
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jian Zhao
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yang Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
17
|
Li N, Zhang L, Liu H, Xu Q, Ma F, Zhang CY. Label-free and sensitive detection of N6-methyladenosine demethylase activity in crude cell extracts and clinical cancer tissues based on demethylation-triggered exponential signal amplification. Anal Chim Acta 2023; 1278:341705. [PMID: 37709449 DOI: 10.1016/j.aca.2023.341705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
The m6A demethylase catalyzes the removal of m6A modification to establish proper RNA methylation patterns, and it has emerged as a promising disease biomarker and a therapeutic target. The reported m6A demethylase assays often suffer from tedious producers, expensive reagents, radioactive risk, limited sensitivity, and poor specificity. Herein, we develop a simple, selective, label-free, and highly sensitive fluorescent biosensor for m6A demethylase assay based on demethylation-triggered exponential signal amplification. In this biosensor, m6A demethylase-catalyzed demethylation can protect the circular DNA from the digestion by DpnI, subsequently triggering hyperbranched rolling circle amplification to achieve exponential signal amplification for producing abundant ssDNA and dsDNA products. The amplified DNA signal can be sensitively and simply detected by SYBR Gold in a label-free manner. This biosensor avoids any antibodies, washing/separation procedures, and fluorophore-/quencher-labeled probes, great simplifying the assay procedures and reducing the assay cost. Moreover, this biosensor achieves good specificity and excellent sensitivity with a detection limit of 1.2 fg/μL, which is superior to conventional ELISA (36.3 pg/μL). Especially, this biosensor enables direct monitoring of m6A demethylase activity in crude cell extracts with high accuracy, and it can be further applied for the screening of m6A demethylase inhibitor, measurement of m6A demethylase activity in different cell lines, and discrimination of m6A demethylase level in clinical cancer and healthy tissues, providing a facile and robust platform for RNA methylation-related biomedical research, disease diagnosis, and drug discovery.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lingfei Zhang
- Center for Disease Control and Prevention of Weihai City, Weihai, 264200, China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
18
|
Jayasree PJ, Dutta S, Karemore P, Khandelia P. Crosstalk Between m6A RNA Methylation and miRNA Biogenesis in Cancer: An Unholy Nexus. Mol Biotechnol 2023:10.1007/s12033-023-00921-w. [PMID: 37831403 DOI: 10.1007/s12033-023-00921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent internal reversible chemical modification of RNAs in eukaryotes, which has attracted widespread attention recently owing to its regulatory roles in a plethora of normal developmental processes and human diseases like cancer. Deposition of the m6A mark on RNAs is mediated by the dynamic interplay between m6A regulatory proteins such as m6A RNA methyltransferases (m6A writers), m6A RNA demethylases (m6A erasers) and m6A RNA binding proteins (m6A readers). m6A regulators are ectopically expressed in various cancer types, often leading to aberrant expression of tumor-suppressor and oncogenic mRNAs either directly or indirectly via regulating the biogenesis of non-coding RNAs like miRNAs. miRNAs are tiny regulators of gene expression, which often impact various hallmarks of cancer and thus influence tumorigenesis. It is becoming increasingly clear that m6A RNA modification impacts biogenesis and function of miRNAs, and recent studies have interestingly, uncovered many miRNAs whose biogenesis and function are regulated by m6A writers, erasers and readers. In this review, we discuss various mechanisms by which m6A RNA methylation regulates miRNA biogenesis, the functional crosstalk between m6A RNA methylation and miRNAs and how it modulates various aspects of tumorigenesis. The potential of m6A RNA methylation regulated miRNAs as biomarkers and novel therapeutic targets to treat various cancers is also addressed.
Collapse
Affiliation(s)
- P J Jayasree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Shalmoli Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Pragati Karemore
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
19
|
Bai Y, Zhao H, Liu H, Wang W, Dong H, Zhao C. RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother 2023; 166:115409. [PMID: 37659205 DOI: 10.1016/j.biopha.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Homologous recombination (HR) repair of DNA double-strand breaks (DSBs) is critical for maintaining genomic integrity and stability. Defects in HR increase the risk of tumorigenesis. However, many human tumors exhibit enhanced HR repair capabilities, consequently endowing tumor cells with resistance to DNA-damaging chemotherapy and radiotherapy. This review summarizes the role of RNA methylation in HR repair and therapeutic resistance in human tumors. We also analyzed the interactions between RNA methylation and other HR-modulating modifications including histone acetylation, histone deacetylation, ubiquitination, deubiquitination, protein arginine methylation, and gene transcription. This review proposes that targeting RNA methylation is a promising approach to overcoming HR-mediated therapeutic resistance.
Collapse
Affiliation(s)
- Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Zhao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Haijun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Hongming Dong
- Department of Anatomy, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Wang Q, Zhang L, Su Z, Li W, Jia Y, Zhang J. Serum exosomal m6A demethylase FTO promotes gefitinib resistance in non-small cell lung cancer by up-regulating FLRT3, PTGIS and SIRPα expression. Pulm Pharmacol Ther 2023; 82:102227. [PMID: 37330168 DOI: 10.1016/j.pupt.2023.102227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
This study investigates the molecular mechanism of FTO m6A demethylase in non-small cell lung cancer (NSCLC) and gefitinib resistance using GEO and TCGA databases. Differentially expressed genes (DEGs) were screened from RNA-seq data sets of serum exosomes of gefitinib-resistant NSCLC patients in the GEO database and the NSCLC data set in the GEPIA2 database. From this analysis, FTO m6A demethylase was found to be significantly upregulated in the serum exosomes of gefitinib-resistant NSCLC patients. To identify downstream genes affected by FTO m6A demethylase, weighted correlation network analysis and differential expression analysis were performed, resulting in the identification of three key downstream genes (FLRT3, PTGIS, and SIRPA). Using these genes, the authors constructed a prognostic risk assessment model. Patients with high-risk scores exhibited a significantly worse prognosis. The model could predict the prognosis of NSCLC with high accuracy measured by AUC values of 0.588, 0.608, and 0.603 at 1, 3, and 5 years respectively. Furthermore, m6A sites were found in FLRT3, PTGIS, and SIRPA genes, and FTO was significantly positively correlated with the expression of these downstream genes. Overall, FTO m6A demethylase promotes gefitinib resistance in NSCLC patients by upregulating downstream FLRT3, PTGIS, and SIRPA expression, with these three downstream genes serving as strong prognostic indicators.
Collapse
Affiliation(s)
- Qi Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Lin Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Zhenzhong Su
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Yuxi Jia
- Orthopedic Research Center, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
21
|
Yang X, Qiao S, Zhao W, Li S, Qiao Y, Jiang Y, Zhou Y, Li Y. Homogeneous Electrochemiluminescence for Highly Sensitive Determination of Demethylase FTO Based on Target-Regulated DNAzyme Cleavage and Host-Guest Interaction. Anal Chem 2023. [PMID: 37486003 DOI: 10.1021/acs.analchem.3c01661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Fat mass and obesity-associated protein (FTO) is the first reported N6-methyladenosine (m6A) RNA demethylase. The dysregulation of FTO demethylation is strongly associated with various human cancers in a m6A-dependent manner. Herein, a homogeneous electrochemiluminescence (ECL) method for the determination of FTO was proposed based on the target-regulated DNAzyme cleavage. Moreover, the ECL signal was highly enhanced by host-guest interaction between β-cyclodextrin (β-CD) and tri-n-propylamine (TPrA). The m6A caged DNAzyme 17E-Me acted as a padlock, while the FTO served as the corresponding key. As the key, FTO could specifically remove m6A modification, restoring the cleavage activity of DNAzyme 17E. With the assistance of the Zn2+ cofactor, the substrate strand was cleaved at a specific site, and the ECL indicator of Ru(phen)32+ was discharged to produce an ECL signal. On the contrary, 17E-Me was blocked and no cleavage reaction occurred without the key. For the ECL detection, the electrode modification of β-CD@AuNPs concentrated Ru(phen)32+ species through electrostatic adsorption and gathered TPrA molecules through host-guest interaction with β-CD, which resulted in an intense ECL response. The results demonstrated the ECL intensity linearly correlated with the logarithm of the FTO concentration (from 0.0001 to 100 nM) with a low detection limit (30 fM). The IC50 value for FTO inhibitors rhein and meclofenamic acid were 35.6 μM and 20.3 μM, respectively. The strategy was further validated for FTO detection in MCF-7 cell lysates and Hela cell lysates. This work reveals that this strategy is promising for developing homogeneous ECL method for detection of FTO and screening of the demethylase inhibitors.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
- Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, P. R. China
| | - Shuai Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wei Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Sijia Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yanxia Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yang Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yaqian Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
22
|
Diao MN, Zhang XJ, Zhang YF. The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy. Br J Cancer 2023; 129:8-23. [PMID: 36997662 PMCID: PMC10307841 DOI: 10.1038/s41416-023-02246-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Lung cancer, a highly malignant disease, greatly affects patients' quality of life. N6-methyladenosine (m6A) is one of the most common posttranscriptional modifications of various RNAs, including mRNAs and ncRNAs. Emerging studies have demonstrated that m6A participates in normal physiological processes and that its dysregulation is involved in many diseases, especially pulmonary tumorigenesis and progression. Among these, regulators including m6A writers, readers and erasers mediate m6A modification of lung cancer-related molecular RNAs to regulate their expression. Furthermore, the imbalance of this regulatory effect adversely affects signalling pathways related to lung cancer cell proliferation, invasion, metastasis and other biological behaviours. Based on the close association between m6A and lung cancer, various prognostic risk models have been established and novel drugs have been developed. Overall, this review comprehensively elaborates the mechanism of m6A regulation in the development of lung cancer, suggesting its potential for clinical application in the therapy and prognostic assessment of lung cancer.
Collapse
Affiliation(s)
- Mei-Ning Diao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiao-Jing Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
23
|
Singh M, Bhaskar D, Bhatia P, Thakur R, Sharma P, Bansal D, Jain R, Trehan A. Evaluation of FTO polymorphism in 6-mercaptopurine related intolerance in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2023; 92:51-56. [PMID: 37256334 DOI: 10.1007/s00280-023-04546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Thiopurine drugs like 6-Mercaptopurine (6MP) are the cornerstone of maintenance therapy in acute lymphoblastic leukemia (ALL). A recently described variant in alpha-ketoglutarate dependent dioxygenase (FTO) gene has been reported to play an important role in thiopurine induced myelosuppression. METHODS In this study, we genotyped a coding variant (p.Ala134Thr, rs79206939) and an intronic variant (rs16952570) of FTO in 174 Indian children (age ≤ 12 years) with ALL on maintenance phase of chemotherapy and examined correlation with the risk of thiopurine induced myelosuppression and hepatic toxicity. RESULTS The prevalence of FTO-rs16952570 polymorphism was 18.4% (32/174) with 142 (82%) cases having TT genotype, 26 (15%) cases with TC genotype and 6 (3.4%) cases having CC genotype. FTO-rs79206939 was absent and non-polymorphic in our study group. The mean dose of 6-MP during 36 weeks of maintenance of TT, TC and CC carriers of FTO-rs16952570 was 53.7, 53.6 and 54.1 mg/m2/day. Number of patients tolerating starting dose of 60 mg/m2/day was significantly higher in CC (50%) than TT/TC (14%) genotype carrying cases (p = 0.014). However, no statistical significance was observed for total leukocyte count (TLC), absolute neutrophil count (ANC) as well as for platelets counts in patients harboring FTO-rs16952570 TT/TC/CC genotype at 4, 8, 12, 24 and 36 weeks after start of thiopurine therapy. Further, no significant correlation was noted between number of weeks of chemotherapy interruptions or episodes of febrile neutropenia and no evidence of hepatotoxicity was found with the genotype studied. CONCLUSION Polymorphism in FTO-rs16952570 did not show any correlation with thiopurine related toxicity in ALL patients.
Collapse
Affiliation(s)
- Minu Singh
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Bhaskar
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rozy Thakur
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Sharma
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Bansal
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Jain
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
24
|
Pan Q, Lou J, Yan P, Kang X, Li P, Huang Z. WTAP contributes to the tumorigenesis of osteosarcoma via modulating ALB in an m6A-dependent manner. ENVIRONMENTAL TOXICOLOGY 2023; 38:1455-1465. [PMID: 36988233 DOI: 10.1002/tox.23780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Osteosarcoma (OS) is a prevalent bone malignancy mainly occurred in adolescents. WTAP/N6-methyladenosine (m6A) modification is confirmed to be involved in OS progression. This study is conducted to bring some novel insights to the action mechanism of WTAP/m6A under the hidden pathogenesis of OS. METHODS qRT-PCR was executed to evaluate the expression levels of WTAP and ALB. ALB protein level in OS cells was measured by western blotting. The content of m6A in total RNA was assessed by m6A quantification assay. Me-RIP, dual luciferase reporter, and mRNA stability assays confirmed the target relationship of WTAP with ALB. With the use of the wound healing, CCK-8, and transwell invasion assays, the functional relationship between WTAP and ALB in OS cells was confirmed. The influences of WTAP on tumor growth in vivo were performed in the xenograft model of mouse. RESULTS WTAP was increased but ALB was diminished in OS tissues and/or cell lines. WTAP modulated ALB expression in an m6A-dependent manner. Silencing of WTAP retarded the development of OS via inhibiting cell viability, migration, invasion, and tumor growth. Knockdown of ALB exerted the opposite effects on OS progression. Additionally, ALB deficiency partially eliminated the inhibiting effects of WTAP silencing on cellular processes in OS. CONCLUSIONS This is the first report to clarify the interaction of WTAP/m6A with ALB in OS progression. These experimental data to some extent broadened the horizons of WTAP/m6A in the development of OS.
Collapse
Affiliation(s)
- Qiyong Pan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jigang Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobiao Kang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengfei Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Yang Q, Al-Hendy A. The Functional Role and Regulatory Mechanism of FTO m 6A RNA Demethylase in Human Uterine Leiomyosarcoma. Int J Mol Sci 2023; 24:7957. [PMID: 37175660 PMCID: PMC10178470 DOI: 10.3390/ijms24097957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that presents a poor prognosis and high rates of recurrence and metastasis. The origin and molecular mechanism underlying and driving its clinical and biological behavior remain largely unknown. Recently, we and others have revealed the role of microRNAs, DNA methylation, and histone modifications in contributing to the pathogenesis of uLMS. However, the connection between reversible m6A RNA methylation and uLMS pathogenesis remains unclear. In this study, we assessed the role and mechanism of FTO m6A RNA demethylase in the pathogenesis of uLMS. Immunohistochemistry analysis revealed that the levels of RNA demethylases FTO and ALKBH5 were aberrantly upregulated in uLMS tissues compared to adjacent myometrium with a significant change by histochemical scoring assessment (p < 0.01). Furthermore, the inhibition of FTO demethylase with its small, potent inhibitor (Dac51) significantly decreased the uLMS proliferation dose-dependently via cell cycle arrest. Notably, RNA-seq analysis revealed that the inhibition of FTO with Dac51 exhibited a significant decrease in cell-cycle-related genes, including several CDK members, and a significant increase in the expression of CDKN1A, which correlated with a Dac51-exerted inhibitory effect on cell proliferation. Moreover, Dac51 treatment allowed the rewiring of several critical pathways, including TNFα signaling, KRAS signaling, inflammation response, G2M checkpoint, and C-Myc signaling, among others, leading to the suppression of the uLMS phenotype. Moreover, transcription factor (TF) analyses suggested that epitranscriptional alterations by Dac51 may alter the cell cycle-related gene expression via TF-driven pathways and epigenetic networks in uLMS cells. This intersection of RNA methylation and other epigenetic controls and pathways provides a framework to better understand uterine diseases, particularly uLMS pathogenesis with a dysregulation of RNA methylation machinery. Therefore, targeting the vulnerable epitranscriptome may provide an additional regulatory layer for a promising and novel strategy for treating patients with this aggressive uterine cancer.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
26
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
27
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
28
|
Zhuang Y, Li T, Hu X, Xie Y, Pei X, Wang C, Li Y, Liu J, Tian Z, Zhang X, Peng L, Meng B, Wu H, Yuan W, Pan Z, Lu Y. MetBil as a novel molecular regulator in ischemia-induced cardiac fibrosis via METTL3-mediated m6A modification. FASEB J 2023; 37:e22797. [PMID: 36753405 DOI: 10.1096/fj.202201734r] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Cardiac fibrosis is a common pathological manifestation in multiple cardiovascular diseases and often results in myocardial stiffness and cardiac dysfunctions. LncRNA (long noncoding RNA) participates in a number of pathophysiological processes. However, its role in cardiac fibrosis remains unclear. The purpose of this study was to investigate the role and molecular mechanism of MetBil in regulating cardiac fibrosis. Our data showed that METTL3 binding lncRNA (MetBil) was significantly increased both in fibrotic tissue following myocardial infarction (MI) in mice and in cardiac fibroblasts (CFs) exposed to TGF-β1 (20 ng/mL) or 20% FBS. Overexpression of MetBil augmented collagen deposition, CF proliferation and activation while silencing MetBil exhibited the opposite effects. Importantly, heterozygous knockout of MetBil alleviated cardiac fibrosis and improved cardiac function after MI. RNA pull-down and RNA-binding protein immunoprecipitation assay showed that METTL3 is a direct downstream target of MetBil; consistently, MetBil and METTL3 were co-localized in both the nucleus and cytoplasm of CFs. Interestingly, MetBil regulated METTL3 expression at protein level, but not mRNA level, in ubiquitin-proteasome pathway. Enforced expression of METTL3 canceled the antifibrotic effects of silencing MetBil reflected by increased collagen production, CF proliferation and activation. Most notably, the m6A-modified fibrosis-regulated genes mediated by METTL3 are profoundly involved in the regulation of MetBil in the cardiac fibrosis following MI. Our study reveals that MetBil as a novel regulator of fibrosis promotes cardiac fibrosis via interacting with METTL3 and regulating the expression of the methylated fibrosis-associated genes, providing a new intervening target for fibrosis-associated cardiac diseases.
Collapse
Affiliation(s)
- Yuting Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,Scientific Research Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Tingting Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaoxi Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yilin Xie
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xinyu Pei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chaoqun Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yuyang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Junwu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhongrui Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaowen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Lili Peng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Bo Meng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Hao Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Wei Yuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
29
|
Yin H, Hong H, Yin P, Lu W, Niu S, Chen X, Xia Y, Jiang P, Huang Z. Increased levels of N6-methyladenosine in peripheral blood RNA: a perspective diagnostic biomarker and therapeutic target for non-small cell lung cancer. Clin Chem Lab Med 2023; 61:473-484. [PMID: 36542027 DOI: 10.1515/cclm-2022-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Due to lack of effective biomarkers for non-small cell lung cancer (NSCLC), many patients are diagnosed at an advanced stage, which leads to poor prognosis. Dysregulation of N6-methyladenosine (m6A) RNA contributes significantly to tumorigenesis and tumor progression. However, the diagnostic value of m6A RNA status in peripheral blood to screen NSCLC remains unclear. METHODS Peripheral blood samples from 152 NSCLC patients and 64 normal controls (NCs) were applied to assess the m6A RNA levels. Bioinformatics and qRT-PCR analysis were performed to identify the specific immune cells in peripheral blood cells and investigate the mechanism of the alteration of m6A RNA levels. RESULTS Robust elevation of m6A RNA levels of peripheral blood cells was exhibited in the NSCLC group. Moreover, the m6A levels increased as NSCLC progressed, and reduced after treatment. The m6A levels contained area under the curve (AUC) was 0.912, which was remarkably greater than the AUCs for CEA (0.740), CA125 (0.743), SCC (0.654), and Cyfra21-1 (0.730). Furthermore, the combination of these traditional biomarkers with m6A levels elevated the AUC to 0.970. Further analysis established that the expression of m6A erasers FTO and ALKBH5 were both markedly reduced and negatively correlated with m6A levels in peripheral blood of NSCLC. Additionally, GEO database and flow cytometry analysis implied that FTO and ALKBH5 attributes to peripheral CD4+ T cells proportion and activated the immune functions of T cells. CONCLUSIONS These findings unraveled that m6A RNA of peripheral blood immune cells was a prospective biomarker for the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Haofan Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China.,Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China.,Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P.R. China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ping Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wenhua Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Shiqiong Niu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P.R. China
| | - Xinchun Chen
- Blood Transfusion Department, University of Chineses Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Yong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First' People Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Zhijian Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
30
|
Frankowska N, Bryl E, Fulop T, Witkowski JM. Longevity, Centenarians and Modified Cellular Proteodynamics. Int J Mol Sci 2023; 24:ijms24032888. [PMID: 36769212 PMCID: PMC9918038 DOI: 10.3390/ijms24032888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We have shown before that at least one intracellular proteolytic system seems to be at least as abundant in the peripheral blood lymphocytes of centenarians as in the same cells of young individuals (with the cells of the elderly population showing a significant dip compared to both young and centenarian cohorts). Despite scarce published data, in this review, we tried to answer the question how do different types of cells of longevous people-nonagenarians to (semi)supercentenarians-maintain the quality and quantity of their structural and functional proteins? Specifically, we asked if more robust proteodynamics participate in longevity. We hypothesized that at least some factors controlling the maintenance of cellular proteomes in centenarians will remain at the "young" level (just performing better than in the average elderly). In our quest, we considered multiple aspects of cellular protein maintenance (proteodynamics), including the quality of transcribed DNA, its epigenetic changes, fidelity and quantitative features of transcription of both mRNA and noncoding RNAs, the process of translation, posttranslational modifications leading to maturation and functionalization of nascent proteins, and, finally, multiple facets of the process of elimination of misfolded, aggregated, and otherwise dysfunctional proteins (autophagy). We also included the status of mitochondria, especially production of ATP necessary for protein synthesis and maintenance. We found that with the exception of the latter and of chaperone function, practically all of the considered aspects did show better performance in centenarians than in the average elderly, and most of them approached the levels/activities seen in the cells of young individuals.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jacek M. Witkowski
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1510
| |
Collapse
|
31
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
32
|
Abdollahi S, Hasanpour Ardekanizadeh N, Poorhosseini SM, Gholamalizadeh M, Roumi Z, Goodarzi MO, Doaei S. Unraveling the Complex Interactions between the Fat Mass and Obesity-Associated (FTO) Gene, Lifestyle, and Cancer. Adv Nutr 2022; 13:2406-2419. [PMID: 36104156 PMCID: PMC9776650 DOI: 10.1093/advances/nmac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a complicated process and originates from genetic, epigenetic, and environmental factors. Recent studies have reported a potential critical role for the fat mass and obesity-associated (FTO) gene in carcinogenesis through different signaling pathways such as mRNA N6-methyladenosine (m6A) demethylation. The most common internal modification in mammalian mRNA is the m6A RNA methylation that has significant biological functioning through regulation of cancer-related cellular processes. Some environmental factors, like physical activity and dietary intake, may influence signaling pathways engaged in carcinogenesis, through regulating FTO gene expression. In addition, people with FTO gene polymorphisms may be differently influenced by cancer risk factors, for example, FTO risk allele carriers may need a higher intake of nutrients to prevent cancer than others. In order to obtain a deeper viewpoint of the FTO, lifestyle, and cancer-related pathway interactions, this review aims to discuss upstream and downstream pathways associated with the FTO gene and cancer. The present study discusses the possible mechanisms of interaction of the FTO gene with various cancers and provides a comprehensive picture of the lifestyle factors affecting the FTO gene as well as the possible downstream pathways that lead to the effect of the FTO gene on cancer.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences,
Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad
University, Tehran, Iran
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saeid Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences,
Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Wang X, Guo Z, Yan F. RNA Epigenetics in Chronic Lung Diseases. Genes (Basel) 2022; 13:genes13122381. [PMID: 36553648 PMCID: PMC9777603 DOI: 10.3390/genes13122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic lung diseases are highly prevalent worldwide and cause significant mortality. Lung cancer is the end stage of many chronic lung diseases. RNA epigenetics can dynamically modulate gene expression and decide cell fate. Recently, studies have confirmed that RNA epigenetics plays a crucial role in the developing of chronic lung diseases. Further exploration of the underlying mechanisms of RNA epigenetics in chronic lung diseases, including lung cancer, may lead to a better understanding of the diseases and promote the development of new biomarkers and therapeutic strategies. This article reviews basic information on RNA modifications, including N6 methylation of adenosine (m6A), N1 methylation of adenosine (m1A), N7-methylguanosine (m7G), 5-methylcytosine (m5C), 2'O-methylation (2'-O-Me or Nm), pseudouridine (5-ribosyl uracil or Ψ), and adenosine to inosine RNA editing (A-to-I editing). We then show how they relate to different types of lung disease. This paper hopes to summarize the mechanisms of RNA modification in chronic lung disease and finds a new way to develop early diagnosis and treatment of chronic lung disease.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
| | - Zhihou Guo
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
| | - Furong Yan
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
- Correspondence:
| |
Collapse
|
34
|
Zeng QC, Sun Q, Su WJ, Li JC, Liu YS, Zhang K, Yang LQ. Analysis of m 6A modulator-mediated methylation modification patterns and the tumor microenvironment in lung adenocarcinoma. Sci Rep 2022; 12:20684. [PMID: 36450735 PMCID: PMC9712433 DOI: 10.1038/s41598-022-20730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. In the development and progression of LUAD, epigenetic aberration plays a crucial role. However, the function of RNA N6-methyladenosine (m6A) modifications in the LUAD progression is unknown. The m6A regulator modification patterns in 955 LUAD samples were analyzed comprehensively. Patterns were systematically correlated with the tumor microenvironment (TME) cell-infiltration characteristics. Using principal component analysis algorithms, the m6Ascore was generated to quantify m6A modification patterns in individual tumors. Then, their values for predicting prognoses and therapeutic response in LUAD patients were assessed. Three distinct m6A modification patterns in LUAD were identified. Among them, the prognosis of m6Acluster C was the best, while the prognosis of m6Acluster A was the worst. Interestingly, the characterization of TME cell infiltration and biological behavior differed among the three patterns. To evaluate m6A modification patterns within individual tumors, an m6Ascore signature was constructed. The results showed that the high m6Ascore group was associated with a better prognosis; tumor somatic mutations and tumor microenvironment differed significantly between the high- and low- m6Ascore groups. Furthermore, in the cohort with anti-CTLA-4 treatment alone, patients with a high m6Ascore had higher ICI scores, which indicated significant therapeutic advantage and clinical benefits.
Collapse
Affiliation(s)
- Qing-Cui Zeng
- grid.410646.10000 0004 1808 0950Department of Geriatric Intensive Care Unit, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China ,grid.9227.e0000000119573309Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qin Sun
- grid.410646.10000 0004 1808 0950Department of Geriatric Intensive Care Unit, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China ,grid.9227.e0000000119573309Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Wen-Jie Su
- grid.410646.10000 0004 1808 0950Department of Anesthesiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China ,grid.9227.e0000000119573309Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jia-Cen Li
- grid.410646.10000 0004 1808 0950Department of Anesthesiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China ,grid.9227.e0000000119573309Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yi-Sha Liu
- grid.410646.10000 0004 1808 0950Department of Pathology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China ,grid.9227.e0000000119573309Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Kun Zhang
- grid.410646.10000 0004 1808 0950Department of Chest Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China ,grid.9227.e0000000119573309Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Li-Qing Yang
- grid.410646.10000 0004 1808 0950Department of Respiratory Medicine, Eastern Hospital, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Sichuan Province, No. 585, Honghe North Road, LongQuanYi District, Chengdu, 610000 China ,grid.9227.e0000000119573309Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
35
|
Wang Z, Mu L, Feng H, Yao J, Wang Q, Yang W, Zhou H, Li Q, Xu L. Expression patterns of platinum resistance-related genes in lung adenocarcinoma and related clinical value models. Front Genet 2022; 13:993322. [PMID: 36506331 PMCID: PMC9730711 DOI: 10.3389/fgene.2022.993322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to explore platinum resistance-related biomarkers and mechanisms in lung adenocarcinoma. Through the analysis of gene expression data of lung adenocarcinoma patients and normal patients from The Cancer Genome Atlas, Gene Expression Omnibus database, and A database of genes related to platinum resistance, platinum resistance genes in lung adenocarcinoma and platinum resistance-related differentially expressed genes were obtained. After screening by a statistical significance threshold, a total of 252 genes were defined as platinum resistance genes with significant differential expression, of which 161 were up-regulated and 91 were down-regulated. The enrichment results of up-regulated gene Gene Ontology (GO) showed that TOP3 entries related to biological processes (BP) were double-strand break repair, DNA recombination, DNA replication, the down-regulated gene GO enriches the TOP3 items about biological processes (BP) as a response to lipopolysaccharide, muscle cell proliferation, response to molecule of bacterial origin. Gene Set Enrichment Analysis showed that the top three were e2f targets, g2m checkpoint, and rgf beta signaling. A prognostic model based on non-negative matrix factorization classification showed the characteristics of high- and low-risk groups. The prognostic model established by least absolute shrinkage and selection operator regression and risk factor analysis showed that genes such as HOXB7, NT5E, and KRT18 were positively correlated with risk score. By analyzing the differences in m6A regulatory factors between high- and low-risk groups, it was found that FTO, GPM6A, METTL3, and YTHDC2 were higher in the low-risk group, while HNRNPA2B1, HNRNPC, TGF2BP1, IGF2BP2, IGF2BP3, and RBM15B were higher in the high-risk group. Immune infiltration and drug sensitivity analysis also showed the gene characteristics of the platinum-resistant population in lung adenocarcinoma. ceRNA analysis showed that has-miR-374a-5p and RP6-24A23.7 were lower in the tumor expression group, and that the survival of the low expression group was worse than that of the high expression group. In conclusion, the results of this study show that platinum resistance-related differentially expressed genes in lung adenocarcinoma are mainly concentrated in biological processes such as DNA recombination and response to lipopolysaccharide. The validation set proved that the high-risk group of our prognostic model had poor survival. M6A regulatory factor analysis, immune infiltration, and drug sensitivity analysis all showed differences between high and low-risk groups. ceRNA analysis showed that has-miR-374a-5p and RP6-24A23.7 could be protective factors. Further exploration of the potential impact of these genes on the risk and prognosis of drug-resistant patients with lung adenocarcinoma would provide theoretical support for future research.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Mu
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Feng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang, China
| | - Jialin Yao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiling Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinglin Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Zhejiang, China,*Correspondence: Qinglin Li, ; Ling Xu,
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Qinglin Li, ; Ling Xu,
| |
Collapse
|
36
|
Xu X, Zhang P, Huang Y, Shi W, Mao J, Ma N, Kong L, Guo L, Liu J, Chen J, Lu R. METTL3-mediated m6A mRNA contributes to the resistance of carbon-ion radiotherapy in non-small-cell lung cancer. Cancer Sci 2022; 114:105-114. [PMID: 36114749 PMCID: PMC9807515 DOI: 10.1111/cas.15590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023] Open
Abstract
Lung cancer is one of the leading causes of death among cancer patients worldwide. Carbon-ion radiotherapy is a radical nonsurgical treatment with high local control rates and no serious adverse events. N6-methyladenosine (m6A) modification is one of the most common chemical modifications in eukaryotic messenger RNA (mRNA) and has important effects on the stability, splicing, and translation of mRNAs. Recently, the regulatory role of m6A in tumorigenesis has been recognized more and more. However, the dysregulation of m6A and its role in carbon-ion radiotherapy of non-small-cell lung cancer (NSCLC) remains unclear. In this study, we found that the level of methyltransferase-like 3 (METTL3) and its mediated m6A modification were elevated in NSCLC cells with carbon-ion radiotherapy. Knockdown of METTL3 in NSCLC cells impaired proliferation, migration, and invasion in vitro and in vivo. Moreover, we found that METTL3-mediated m6A modification of mRNA inhibited the decay of H2A histone family member X (H2AX) mRNA and enhanced its expression, which led to enhanced DNA damage repair and cell survival.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina,Department of Clinical LaboratoryShanghai Proton and Heavy Ion CenterShanghaiChina
| | - Peiru Zhang
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina
| | - Yangle Huang
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina
| | - Weizhong Shi
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina
| | - Jingfang Mao
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina,Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Ningyi Ma
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina
| | - Lin Kong
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina,Department of Radiation OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Lin Guo
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina,Department of Clinical LaboratoryShanghai Proton and Heavy Ion CenterShanghaiChina
| | - Jinlong Liu
- Zhangjiang InstituteFudan UniversityShanghaiChina
| | - Jian Chen
- Department of Radiation OncologyShanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai Proton and Heavy Ion CenterShanghaiChina
| | - Renquan Lu
- Department of Clinical LaboratoryFudan University Shanghai Cancer CenterShanghaiChina,Department of Clinical LaboratoryShanghai Proton and Heavy Ion CenterShanghaiChina
| |
Collapse
|
37
|
Huang H, Wu W, Lu Y, Pan X. The development and validation of a m6A-lncRNAs based prognostic model for overall survival in lung squamous cell carcinoma. J Thorac Dis 2022; 14:4055-4072. [PMID: 36389308 PMCID: PMC9641337 DOI: 10.21037/jtd-22-1185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND No biomarkers have been identified for the prognosis of lung squamous cell carcinoma (LUSC). Risk models based on m6A-lncRNAs help to predict survival in some cancers. However, very few studies have reported m6A-lncRNA risk models in LUSC. We aimed to construct a prognostic model based on m6A-lncRNAs in LUSC. METHODS The clinical and RNA-sequencing information of 504 LUSC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Prognostic m6A-lncRNAs were identified by a Pearson correlation analysis and univariate Cox regression analysis. The ConsensusClusterPlus algorithm was used to cluster the prognostic m6A-lncRNAs. The overall survival (OS) and clinicopathological characteristics of the 2 clusters were compared. A gene set enrichment analysis (GSEA) analysis was performed to analyze the genes enriched in the 2 clusters. A least absolute shrinkage and selection operator (LASSO) Cox regression analysis was used to construct the risk-score model. Two hundred and forty eight patients were randomly chosen from TCGA-LUSC cohort for the training set. The receiver operating characteristic (ROC) curve analysis was used to assess the predictive ability of the model. The clinical characteristics and OS in the high- and low-risk groups were compared. The independent prognostic value of the model was tested by Cox regression analyses. RESULTS Thirteen m6A-lncRNAs were identified as prognostic lncRNAs and classified into cluster A and cluster B. The OS of patients in cluster A was better than that of patients in cluster B (P<0.001). Patients in cluster B had higher expressions of immune checkpoints. Immune score, stromal score, and ESTIMATE score were higher in cluster B (P<0.001). Seven of the 13 lncRNAs were used to construct the risk-score model. Patients in the high-risk group had a worse OS. ROC curves showed a under the curve (AUC) of 0.639 in the training set and 0.624 in the validation set. A high risk was associated with cluster B, a high immune score, and stage III-IV disease. Patients in the high-risk group had increased expressions of immune checkpoints. The Cox regression analyses showed that the risk-score model had independent prognostic value for OS. The risk-score model retained its prognostic value in different subgroups. CONCLUSIONS The m6A-lncRNA risk-score model is an independent prognostic factor for OS in LUSC patients. However, the risk-score model need to be further tested clinically.
Collapse
Affiliation(s)
- Hanwen Huang
- Department of Oncology, Yunfu People’s Hospital, Yunfu, China
| | - Weibin Wu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiyu Lu
- Oncology Department, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Xiaofen Pan
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
38
|
Tsuchiya K, Yoshimura K, Iwashita Y, Inoue Y, Ohta T, Watanabe H, Yamada H, Kawase A, Tanahashi M, Ogawa H, Funai K, Shinmura K, Suda T, Sugimura H. m 6A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther 2022; 29:1355-1372. [PMID: 35318440 PMCID: PMC9576599 DOI: 10.1038/s41417-022-00451-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/03/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The modification of N6-methyladenosine (m6A) in RNA and its eraser ALKBH5, an m6A demethylase, play an important role across various steps of human carcinogenesis. However, the involvement of ALKBH5 in non-small-cell lung cancer (NSCLC) development remains to be completely elucidated. The current study revealed that the expression of ALKBH5 was increased in NSCLC and increased expression of ALKBH5 worsened the prognosis of patients with NSCLC. In vitro study revealed that ALKBH5 knockdown suppressed cell proliferation ability of PC9 and A549 cells and promoted G1 arrest and increased the number of apoptotic cells. Furthermore, ALKBH5 overexpression increased the cell proliferation ability of the immortalized cell lines. Microarray analysis and western blotting revealed that the expression of CDKN1A (p21) or TIMP3 was increased by ALKBH5 knockdown. These alterations were offset by a double knockdown of both ALKBH5 and one of the IGF2BPs. The decline of mRNAs was, at least partly, owing to the destabilization of these mRNAs by one of the IGF2BPs. In conclusions, the ALKBH5-IGF2BPs axis promotes cell proliferation and tumorigenicity, which in turn causes the unfavorable prognosis of NSCLC.
Collapse
Affiliation(s)
- Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ohta
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
39
|
Xu L, Zhou L, Yan C, Li L. Emerging role of N6-methyladenosine RNA methylation in lung diseases. Exp Biol Med (Maywood) 2022; 247:1862-1872. [PMID: 36278325 PMCID: PMC9679358 DOI: 10.1177/15353702221128564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In recent years, with the increase of air pollution, smoking, aging, and respiratory infection, the incidence rate and mortality of lung diseases are increasing annually, which has become a major hazard to human health. N6-methyladenosine (m6A) RNA methylation is the most abundant modifications in eukaryotes, and such modified RNA can be specifically recognized and combined by m6A recognition proteins and then mediate RNA splicing, maturation, enucleation, degradation, and translation. More and more studies have revealed that the m6A modification is involved in the pathogenesis and development of some diseases; however, the mechanisms of m6A in lung diseases are poorly understood. In this review, we summarize the latest progress in the biological function of m6A modifications in lung diseases and discuss the potential therapeutic and prognostic strategies. The dysregulation of global m6A levels and m6A regulators may affect the occurrence and development of asthma, chronic obstructive pulmonary disease, lung cancer, and other lung diseases through inflammation and immune function. In lung cancer, this modification has an important impact on malignant cell proliferation, migration, invasion, and drug resistance. In addition, abnormally changed m6A-modified proteins in lung cancer tissue samples and circulating tumor cells (CTCs) may be used as diagnostic and prognostic markers of lung cancer. Models composed of multiple m6A regulators can be used to evaluate the risk prediction or prognosis of asthma and pulmonary fibrosis. In general, the in-depth study of m6A modifications is a frontier direction in disease research. It provides novel insights for understanding of the molecular mechanisms underlying disease occurrence, development, and drug resistance, as well as for the development of effective novel therapeutics.
Collapse
Affiliation(s)
- Limin Xu
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China
| | - Lingyan Zhou
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China
| | - Chenxin Yan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liqin Li
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China,Liqin Li.
| |
Collapse
|
40
|
Qiu FS, He JQ, Zhong YS, Guo MY, Yu CH. Implications of m6A methylation and microbiota interaction in non-small cell lung cancer: From basics to therapeutics. Front Cell Infect Microbiol 2022; 12:972655. [PMID: 36118041 PMCID: PMC9478539 DOI: 10.3389/fcimb.2022.972655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenine (m6A) is one of the most common RNA epigenetic modifications in all higher eukaryotes. Increasing evidence demonstrated that m6A-related proteins, acted as oncogenes or tumor suppressors, are abnormally expressed in the cell lines and tissues of non-small cell lung cancer (NSCLC). In addition, lung as the special immune organ contacts with the outer environments and thereby inevitably suffers from different types of microbial pathogen attack. Those microbial pathogens affect the development, progression, and clinical outcomes of NSCLC via altering host m6A modification to disrupt pulmonary immune homeostasis and increase the susceptibility; conversely, host cells modulate m6A modification to repress bacterial colonization. Therefore, m6A harbors the potential to be the novel biomarkers and targets for predicting poor prognosis and chemotherapy sensitivity of patients with lung cancer. In this paper, we provided an overview of the biological properties of m6A-modifying enzymes, and the mechanistic links among lung microbiota, m6A modification and NSCLC. Although the flood of novel m6A-related inhibitors represents many dramatic improvements in NSCLC therapy, their efficacy and toxicity in NSCLC are explored to address these pivotal gaps in the field.
Collapse
Affiliation(s)
- Fen-Sheng Qiu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Jia-Qi He
- Pharmaceutical Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Sen Zhong
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Chen-Huan Yu,
| |
Collapse
|
41
|
Effects of N6-Methyladenosine Regulators on LAG3 and Immune Infiltrates in Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:1829528. [PMID: 36051357 PMCID: PMC9427291 DOI: 10.1155/2022/1829528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Background. Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer, which is one of the most commonly diagnosed tumors and the leading causes of death from cancer around the world. Since RNA methylation is a posttranscriptional modification and affects so much biological progress, it is urged to explore the role of N6-methyladenosine (m6A) methylation in LUAD. Methods. We explored the expression of 24 m6A methylation genes, as well as their correlations with LAG3 in 561 LUAD samples from TCGA. Consensus clustering was applied to m6A methylation genes, and two LUAD subgroups were identified. The expression of m6A genes was analyzed by the Wilcoxon test. KEGG and GO enrichment analyses were performed to indicate the pathway affected by differentially expressed genes in the two groups. A prognostic model based on LASSO regression using an eleven-m6A gene signature was constructed according to the expression of these genes. Receiver operating characteristic (ROC) curve was used to confirm the accuracy of the model in the TCGA cohort, as well as in the test cohort from the Gene Expression Omnibus (GEO) database. Results. Compared to cluster 1, cluster 2 showed poorer overall survival (OS) and higher LAG3 expression. In addition, KEGG and GO enrichment analyses indicated that differentially expressed genes are enriched in the immune response. We also observed that the expression of LAG3 is positively correlated with IGF2BP2, CBLL1, and HNRNPA2B1 and negatively correlated with YTHDF2, YTHDF3, and FTO. For patients in the TCGA cohort, the AUC score is 0.7, and the AUC score for the GSE50081 cohort is 0.675. Patients with lower risk scores exhibited better overall survival and lower expression of LAG3 than patients with higher risk scores. Conclusions. In brief, our results indicated the important role of m6 methylation in affecting the tumor immune microenvironment and the survival of patients with LUAD. The m6A methylation gene signatures might serve as promising therapeutic targets and help the immunotherapy of LUAD in the future.
Collapse
|
42
|
FTO promotes clear cell renal cell carcinoma progression via upregulation of PDK1 through an m 6A dependent pathway. Cell Death Dis 2022; 8:356. [PMID: 35961973 PMCID: PMC9374762 DOI: 10.1038/s41420-022-01151-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022]
Abstract
FTO, as an m6A mRNA demethylase, is involved in various cancers. However, the role of FTO in clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, we discovered FTO is upregulated in ccRCC. Functionally, knockdown of FTO significantly impairs the proliferation and migration ability of ccRCC cells. Mechanistically, our data suggest FTO promotes the proliferation and migration of ccRCC through preventing degradation of PDK1 mRNA induced by YTHDF2 in an m6A-dependent mechanism. Overall, our results identify the protumorigenic role of FTO through the m6A/YTHDF2/PDK1 pathway, which could be a promising therapeutic target for ccRCC.
Collapse
|
43
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Yang H, Chiang C, Luo Q, Chen C, Huang J, Zhu L, Zheng D. YT521-B homology domain family proteins as N6-methyladenosine readers in tumors. Front Genet 2022; 13:934223. [PMID: 36017491 PMCID: PMC9395638 DOI: 10.3389/fgene.2022.934223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal chemical modification of eukaryotic mRNA and plays diverse roles in gene regulation. The m6A modification plays a significant role in numerous cancer types, including kidney, stomach, lung, bladder tumors, and melanoma, through varied mechanisms. As direct m6A readers, the YT521-B homology domain family proteins (YTHDFs) play a key role in tumor transcription, translation, protein synthesis, tumor stemness, epithelial-mesenchymal transition (EMT), immune escape, and chemotherapy resistance. An in-depth understanding of the molecular mechanism of YTHDFs is expected to provide new strategies for tumor treatment. In this review, we provide a systematic description of YTHDF protein structure and its function in tumor progression.
Collapse
Affiliation(s)
- Heng Yang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Chengyao Chiang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
- Central Laboratory, Southern University of Science and Technology, Yantain Hospital, Shenzhen, China
| | - Qinhong Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Chunlan Chen
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Junrong Huang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Lizhi Zhu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China
| |
Collapse
|
45
|
Kumar R, Ningombam SS, Kumar R, Goel H, Gogia A, Khurana S, Deo SVS, Mathur S, Tanwar P. Comprehensive mutations analyses of FTO (fat mass and obesity-associated gene) and their effects on FTO’s substrate binding implicated in obesity. Front Nutr 2022; 9:852944. [PMID: 35923209 PMCID: PMC9339907 DOI: 10.3389/fnut.2022.852944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
An excessive amount of fat deposition in the body leads to obesity which is a complex disease and poses a generic threat to human health. It increases the risk of various other diseases like diabetes, cardiovascular disease, and multiple types of cancer. Genomic studies have shown that the expression of the fat mass obesity (FTO) gene was highly altered and identified as one of the key biomarkers for obesity. This study has been undertaken to investigate the mutational profile of the FTO gene and elucidates its effect on the protein structure and function. Harmful effects of various missense mutations were predicted using different independent tools and it was observed that all mutations were highly pathogenic. Molecular dynamics (MD) simulations were performed to study the structure and function of FTO protein upon different mutations and it was found that mutations decreased the structure stability and affected protein conformation. Furthermore, a protein residue network analysis suggested that the mutations affected the overall residues bonding and topology. Finally, molecular docking coupled with MD simulation suggested that mutations affected FTO substrate binding by changing the protein-ligand affinity. Hence, the results of this finding would help in an in-depth understanding of the molecular biology of the FTO gene and its variants and lead to the development of effective therapeutics against associated diseases and disorders.
Collapse
Affiliation(s)
- Rakesh Kumar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Somorjit Singh Ningombam
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Kumar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Gogia
- Department of Medical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Khurana
- Department of Medical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - S. V. S. Deo
- Department of Surgical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
- *Correspondence: Pranay Tanwar,
| |
Collapse
|
46
|
Comprehensive Analysis of Immune Cell Infiltration of m6a-Related lncRNA in Lung Squamous Cell Carcinoma and Construction of Relevant Prognostic Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9139823. [PMID: 35872842 PMCID: PMC9303127 DOI: 10.1155/2022/9139823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is the main cause of cancer-related mortality. Some studies demonstrate that m6a and long noncoding RNA (lncRNA) are vital in the pathogenesis of LUSC. In this study, we aimed to further understand the prognostic value of m6a-related lncRNAs in LUSC and their role in the immune microenvironment. For this, we obtained LUSC transcriptome and clinical data from the TCGA database. Further, the identified m6a-related and prognostically relevant lncRNAs were clustered into groups based on prognostic lncRNA expression. Further analysis of the differences between clusters was performed. Five m6A-related lncRNAs were used for model construction using the LASSO regression. The receiver-operating characteristic curve (ROC curves) and decision curve analysis (DCA) were used to assess the model accuracy. Finally, the model was validated using polymerase chain reaction (PCR). We identified 12 m6a-related lncRNAs that were associated with prognosis and were lowly expressed in tumors. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) highly correlated with prognostic genes, and differential analysis indicated that it was highly expressed in the tumor group and cluster 1. In cluster 2 TIME, tumor cells were less pure and more immune, and stromal-associated cells were present. A prognostic model was constructed based on five m6a-lncRNAs. The area under the curve (AUC) was >0.5 in test group and train group. The PCR results showed that the genes in the prognostic model were lowly expressed in the tumor and were statistically significant (
). We noted that m6a-lncRNAs were strongly associated with LUSC prognosis and the immune microenvironment. Thus, PRC1-AS1, AL132780.2, AC013731.1, SNHG30, and AL358472.2 can be considered as new targets for the treatment of patients with LUSC.
Collapse
|
47
|
Jin H, Wu Z, Tan B, Liu Z, Zu Z, Wu X, Bi Y, Hu X. Ibuprofen promotes p75 neurotrophin receptor expression through modifying promoter methylation and N6-methyladenosine-RNA-methylation in human gastric cancer cells. Bioengineered 2022; 13:14595-14604. [PMID: 35758042 PMCID: PMC9342148 DOI: 10.1080/21655979.2022.2092674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
It is acknowledged that nonsteroidal anti-inflammatory drugs (NSAIDs) can participate in various signaling pathways, while information about their epigenetic effects are limited. p75NTR (p75 neurotrophin receptor) can inhibit tumor growth by inducing cell cycle arrest and regulating cell cycle arrest and apoptotic cell death. The expression of p75NTR is influenced by epigenetic roles. We explored the effects of ibuprofen on p75NTR expression and investigated whether promoter methylation and N6-methyladenosine (m6A) RNA methylation regulates this process in human gastric cancer cells (SGC7901 and MKN45). Cell lines were treated with ibuprofen 0, 2.5, 5, 10, 20 µM, and then DNA, RNA, and protein were isolated 24 h later. Expression and promoter methylation of p75NTR were detected by RT-qPCR and Western blot. The levels of m6A-p75NTR were measured by RNA immunoprecipitation. We also used RT-qPCR to determine the levels of m6A-related regulators, METTL3, METTL14, ALKBH5, FTO, YTHDC2, and YTHDF1-3. Ibuprofen attenuated p75NTR promoter methylation (p < 0.01) and increased p75NTR level (p < 0.001). Ibuprofen increased m6A-p53 expression (p < 0.01) by promoting the expression of METTL3 (p < 0.01) and METTL14 (p < 0.05); and increased levels of YTHDF1 (p < 0.001), YTHDF3 (p < 0.001), and YTHDC2 (p < 0.01) that finally reinforced p53 translation (p < 0.01). Therefore, our results present that ibuprofen epigenetically increased p75NTR expression by downregulating promoter methylation and upregulating m6A-RNA-methylation in SGC7901 and MKN45 cells. Our study unveils a novel mechanism for p75NTR regulation by NSAIDs and helps the design of treatment targets.
Collapse
Affiliation(s)
- Haifeng Jin
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Zheng Wu
- Department of Tumor Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bibo Tan
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhen Liu
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Zhanfei Zu
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Xiaoyun Wu
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, Hebei, China
| | - Yuwang Bi
- Information Section, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA)
| | - Xingmao Hu
- Medical Management Office of the Medical Service Bureau of the Joint Logistics Support Force
| |
Collapse
|
48
|
Chen F, Xie X, Chao M, Cao H, Wang L. The Potential Value of m6A RNA Methylation in the Development of Cancers Focus on Malignant Glioma. Front Immunol 2022; 13:917153. [PMID: 35711459 PMCID: PMC9196637 DOI: 10.3389/fimmu.2022.917153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is an epigenetic modification that has emerged in the last few years and has received increasing attention as the most abundant internal RNA modification in eukaryotic cells. m6A modifications affect multiple aspects of RNA metabolism, and m6A methylation has been shown to play a critical role in the progression of multiple cancers through a variety of mechanisms. This review summarizes the mechanisms by which m6A RNA methylation induced peripheral cancer cell progression and its potential role in the infiltration of immune cell of the glioblastoma microenvironment and novel immunotherapy. Assessing the pattern of m6A modification in glioblastoma will contribute to improving our understanding of microenvironmental infiltration and novel immunotherapies, and help in developing immunotherapeutic strategies.
Collapse
Affiliation(s)
- Fan Chen
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Xuan Xie
- Reproductive Medicine Center, Department of Gynecology & Obstetrics, Xijing Hospital of Fourth Military Medical University, Xi’an, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Haiyan Cao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
- *Correspondence: Liang Wang,
| |
Collapse
|
49
|
Sun J, Cheng B, Su Y, Li M, Ma S, Zhang Y, Zhang A, Cai S, Bao Q, Wang S, Zhu P. The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Front Genet 2022; 13:869950. [PMID: 35518355 PMCID: PMC9065606 DOI: 10.3389/fgene.2022.869950] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common and conserved internal eukaryotic mRNA modification. m6A modification is a dynamic and reversible post-transcriptional regulatory modification, initiated by methylase and removed by RNA demethylase. m6A-binding proteins recognise the m6A modification to regulate gene expression. Recent studies have shown that altered m6A levels and abnormal regulator expression are crucial in the ageing process and the occurrence of age-related diseases. In this review, we summarise some key findings in the field of m6A modification in the ageing process and age-related diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases (CVDs). We focused on the biological function and potential molecular mechanisms of m6A RNA methylation in ageing and age-related disease progression. We believe that m6A modification may provide a new target for anti-ageing therapies.
Collapse
Affiliation(s)
- Jin Sun
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Bokai Cheng
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yongkang Su
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Man Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shouyuan Ma
- Department of Geriatric Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Outpatient, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Anhang Zhang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuang Cai
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Qiligeer Bao
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuxia Wang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Ping Zhu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
50
|
Tao L, Liu X, Jiang X, Zhang K, Wang Y, Li X, Jiang S, Han T. USP10 as a Potential Therapeutic Target in Human Cancers. Genes (Basel) 2022; 13:genes13050831. [PMID: 35627217 PMCID: PMC9142050 DOI: 10.3390/genes13050831] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Deubiquitination is a major form of post-translational protein modification involved in the regulation of protein homeostasis and various cellular processes. Deubiquitinating enzymes (DUBs), comprising about five subfamily members, are key players in deubiquitination. USP10 is a USP-family DUB featuring the classic USP domain, which performs deubiquitination. Emerging evidence has demonstrated that USP10 is a double-edged sword in human cancers. However, the precise molecular mechanisms underlying its different effects in tumorigenesis remain elusive. A possible reason is dependence on the cell context. In this review, we summarize the downstream substrates and upstream regulators of USP10 as well as its dual role as an oncogene and tumor suppressor in various human cancers. Furthermore, we summarize multiple pharmacological USP10 inhibitors, including small-molecule inhibitors, such as spautin-1, and traditional Chinese medicines. Taken together, the development of specific and efficient USP10 inhibitors based on USP10’s oncogenic role and for different cancer types could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Li Tao
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China;
| | - Xiao Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Xinya Jiang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Kun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Yijing Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Xiumin Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang 453003, China;
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining 272000, China
- Correspondence: (S.J.); (T.H.)
| | - Tao Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang 453003, China;
- Correspondence: (S.J.); (T.H.)
| |
Collapse
|