1
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Zhao Y, Xu L, Wang Q, Li C, Zhang T, Xing S, Yu X. LINC01061 triggers inflammation and inflammasome activation in autoimmune thyroiditis via microRNA-612/BRD4 axis. Int Immunopharmacol 2022; 111:109050. [PMID: 35998503 DOI: 10.1016/j.intimp.2022.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Considering the significance of LINC01061 in papillary thyroid cancer, here, we commenced to study the role of LINC01061 in autoimmune thyroid disease (AITD) and the potential mechanism. Thyroid tissues were attained from patients with AITD, and Nthy-ori 3-1 cells were induced with lipopolysaccharide (LPS), followed by measurement of LINC01061, microRNA (miR)-612, and BRD4 expression as well as their binding relation. The ectopic expression and silencing experimentations were carried out in LPS-induced Nthy-ori 3-1 cells to detect cell viability and apoptosis as well as inflammation and inflammasome. BRD4 and LINC01061 upregulation and miR-612 downregulation were observed in thyroid tissues of AITD patients and LPS-induced Nthy-ori 3-1 cells. Mechanistic analysis manifested that LINC01061 bound to miR-612 that negatively targeted BRD4. LINC01061 upregulated BRD4 to enhance cell viability, trigger inflammation and inflammasome activation but reduce apoptosis of LPS-induced Nthy-ori 3-1 cells by sponging miR-612. In conclusion, LINC01061 induced the occurrence of AITD by upregulation of miR-612-mediated BRD4 expression.
Collapse
Affiliation(s)
- Yuhang Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Qing Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Chengqian Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Tao Zhang
- Qilu Medical College, Shandong University, Jinan 250012, Shandong Province, PR China
| | - Shichao Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China
| | - Xiaolong Yu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, PR China.
| |
Collapse
|
4
|
NEAT1 can be a diagnostic biomarker in the breast cancer and gastric cancer patients by targeting XIST, hsa-miR-612, and MTRNR2L8: integrated RNA targetome interaction and experimental expression analysis. Genes Environ 2022; 44:16. [PMID: 35581633 PMCID: PMC9112444 DOI: 10.1186/s41021-022-00244-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Background The most frequent malignancy in women is breast cancer (BC). Gastric cancer (GC) is also the leading cause of cancer-related mortality. Long non-coding RNAs (lncRNAs) are thought to be important neurotic regulators in malignant tumors. In this study, we aimed to evaluate the expression level of NEAT1 and the interaction of this non-coding RNA with correlated microRNAs, lncRNAs, and mRNAs or protein coding genes, experimentally and bioinformatically. Methods For the bioinformatics analyses, we performed RNA-RNA and protein–protein interaction analyses, using ENCORI and STRING. The expression analyses were performed by five tools: Microarray data analysis, TCGA data analysis (RNA-seq, R Studio), GEPIA2, ENCORI, and real-time PCR experiment. qRT-PCR experiment was performed on 50 GC samples and 50 BC samples, compared to adjacent control tissue. Results Based on bioinformatics and experimental analyses, lncRNA NEAT1 have a significant down-regulation in the breast cancer samples with tumor size lower than 2 cm. Also, it has a significant high expression in the gastric cancer patients. Furthermore, NEAT1 have a significant interaction with XIST, hsa-miR-612 and MTRNR2L8. High expression of NEAT1 have a correlation with the lower survival rate of breast cancer samples and higher survival rate of gastric cancer patients. Conclusion This integrated computational and experimental investigation revealed some new aspects of the lncRNA NEAT1 as a potential prognostic biomarker for the breast cancer and gastric cancer samples. Further investigations about NEA1 and correlated mRNAs, lncRNAs, and microRNAs – specially the mentioned RNAs in this study – can lead the researchers to more clear information about the role of NEAT1 in the breast cancer and gastric cancer.
Collapse
|
5
|
Cholangiopathies and the noncoding revolution. Curr Opin Gastroenterol 2022; 38:128-135. [PMID: 35098934 DOI: 10.1097/mog.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) among others, have attracted a great deal of attention for their potential role as master regulators of gene expression and as therapeutic targets. This review focuses on recent advances on the role of ncRNAs in the pathogenesis, diagnosis and treatment of diseases of the cholangiocytes (i.e. cholangiopathies). RECENT FINDINGS In the recent years, there has been an exponential growth in the knowledge on ncRNAs and their role in cholangiopathies, particularly cholangiocarcinoma. SUMMARY Although several studies focused on miRNAs as noninvasive biomarkers for diagnosis and staging, several studies also highlighted their functions and provided new insights into disease mechanisms.
Collapse
|
6
|
Long non-coding RNA KIKAT/LINC01061 as a novel epigenetic regulator that relocates KDM4A on chromatin and modulates viral reactivation. PLoS Pathog 2021; 17:e1009670. [PMID: 34111227 PMCID: PMC8219169 DOI: 10.1371/journal.ppat.1009670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
KDM4A is a histone lysine demethylase that has been described as an oncogene in various types of cancer. The importance of KDM4A-mediated epigenetic regulation in tumorigenesis is just emerging. Here, by using Kaposi’s sarcoma associated herpesvirus (KSHV) as a screening model, we identified 6 oncogenic virus-induced long non-coding RNAs (lncRNAs) with the potential to open chromatin. RNA immunoprecipitation revealed KSHV-induced KDM4A-associated transcript (KIKAT)/LINC01061 as a binding partner of KDM4A. Integrated ChIP-seq and RNA-seq analysis showed that the KIKAT/LINC01061 interaction may mediate relocalization of KDM4A from the transcription start site (TSS) of the AMOT promoter region and transactivation of AMOT, an angiostatin binding protein that regulates endothelial cell migration. Knockdown of AMOT diminished the migration ability of uninfected SLK and iSLK-BAC16 cells in response to KIKAT/LINC01061 overexpression. Thus, we conclude that KIKAT/LINC01061 triggered shifting of KDM4A as a potential epigenetic mechanism regulating gene transactivation. Dysregulation of KIKAT/LINC01061 expression may represent a novel pathological mechanism contributing to KDM4A oncogenicity. Epigenetic regulation of chromatin structure and gene function connects genotype to phenotype and diseases. Long non-coding RNA (lncRNA) is emerging as a novel type of epigenetic regulator exhibiting diverse biological functions. Aberrant lncRNA expression is associated with various diseases, including cancer. The widespread epigenetic changes that occur during the latent-to-lytic switch of herpes virus life cycle make it an attractive model to study epigenetic regulation. Using Kaposi’s sarcoma associated herpesvirus (KSHV) as a model, we screened the epigenetic function of lncRNAs whose expression was induced by reactivation of this oncogenic virus. KIKAT/LINC01061 was identified as a novel histone lysine-specific demethylase 4A (KDM4A) interacting lncRNA. KDM4A is the first identified histone trimethyl demethylase that has been demonstrated as an oncogene in various cancers. Our data reveal a novel lncRNA-mediated regulation of the epigenetic function of KDM4A and demonstrate this lncRNA-chromatin modifier interaction may serve as a potential target in cancer therapy.
Collapse
|
7
|
Liang W, Xia B, Yan M, Zhai G, Li M. Enhanced LINC01061 Levels as a Serum Biomarker in Gastric Cancer and Promotion of Malignant Transformation. Oncol Res Treat 2021; 44:242-251. [PMID: 33910210 DOI: 10.1159/000508310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The genomic copy number of LINC01061 is amplified in papillary thyroid cancer. However, its role in gastric cancer is not clear. MATERIALS AND METHODS Tissues and serum of GC patients were collected to detect the expression of LINC01061 by quantitative real-time polymerase chain reaction (qRT-PCR). ShRNA were applied to knock down the expression of LINC01061. Growth curves and colony formation experiments were applied to evaluate cell growth. Cell migration was assessed by transwell migration experiments. Cell cycle and apoptosis were analyzed by flow cytometry. Epithelial-mesenchymal transition (EMT) was examined by qRT-PCR and Western blot. RESULTS The expression of LINC01061 was upregulated in tissues and serum of GC patients and it was associated with the clinicopathological features and survival time. Functional study indicated that cell growth and migration were suppressed after LINC01061 knockdown. Cell cycle arrest and increased apoptosis occurred when LINC01061 expression was inhibited. EMT was also impaired combined with a decrease in β-catenin expression after LINC01061 knockdown. CONCLUSIONS Our data indicate that LINC01061 is a novel biomarker for diagnosis and prognosis of GC. LINC01061 promoted progression of GC through cell cycle regulation and EMT.
Collapse
Affiliation(s)
- Wei Liang
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Suzhou Hospital North, Suzhou, China
| | - Bin Xia
- Department of Laboratory Medicine, Suzhou Science and Technology Town Hospital, Nanjing Medical University Affiliated Suzhou Hospital West, Suzhou, China
| | - Meina Yan
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Suzhou Hospital North, Suzhou, China
| | - Guanghua Zhai
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Suzhou Hospital North, Suzhou, China
| | - Meifen Li
- Department of Laboratory Medicine, Nanjing Medical University Affiliated Suzhou Hospital North, Suzhou, China
| |
Collapse
|
8
|
Merdrignac A, Papoutsoglou P, Coulouarn C. Long Noncoding RNAs in Cholangiocarcinoma. Hepatology 2021; 73:1213-1226. [PMID: 32865244 DOI: 10.1002/hep.31534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Aude Merdrignac
- InsermUniv RennesNuMeCan (Nutrition Metabolisms and Cancer)UMR_S 1241CHU Rennes, F-35000RennesFrance
| | | | | |
Collapse
|
9
|
SOX2 knockdown slows cholangiocarcinoma progression through inhibition of transcriptional activation of lncRNA PVT1. Biochem J 2021; 477:3527-3540. [PMID: 32812642 DOI: 10.1042/bcj20200219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/26/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
Cholangiocarcinoma (CCA) has accounted for a high rate of mortality and morbidity in the recent years. Long non-coding RNAs (lncRNAs) play an important role in different cellular environments, including cancer. As such, they have been used as potential targets during CCA therapy. The objective of this study was to investigate the effects of lncRNA PVT1 on CCA and its mechanisms behind lncRNA PVT1 regulation. The interactions among SOX2, lncRNA PVT1, miR-186 and SEMA4D were verified by chromatin immunoprecipitation, RNA immunoprecipitation and dual luciferase reporter gene assay. Gain- and loss-of-function experiments were conducted to explore the modulatory effects of SOX2, lncRNA PVT1, miR-186 and SEMA4D on cell viability, migration and invasion of CCA by CCK-8 and Transwell assays. In vivo effects of lncRNA PVT1 or SEMA4D were studied in a nude mouse model. MiR-186 was poorly expressed while SOX2, lncRNA PVT1 and SEMA4D were highly expressed in CCA cells. SOX2 induced the transcriptional activation of lncRNA PVT1 expression to promote proliferation, migration and invasion of CCA cells. LncRNA PVT1 bound to miR-186 and miR-186 was found to target SEMA4D. The overexpression of lncRNA PVT1 and SEMA4D, as well as the inhibition of miR-186 led to elevated CCA cell proliferation, migration and invasion. In vivo experiments confirmed the inhibitory role of lncRNA PVT1 knockdown or SEMA4D knockdown in CCA. All in all, SOX2 down-regulated miR-186 through the transcriptional activation of lncRNA PVT1, whereas elevating SEMA4D expression, thus promoting the progression of CCA.
Collapse
|
10
|
Yang Y, Deng X, Li Q, Wang F, Miao L, Jiang Q. Emerging roles of long noncoding RNAs in cholangiocarcinoma: Advances and challenges. Cancer Commun (Lond) 2020; 40:655-680. [PMID: 33142045 PMCID: PMC7743012 DOI: 10.1002/cac2.12109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA), a cancer with a relatively low incidence rate, is usually associated with poor prognosis. Current modalities for the diagnosis and treatment of CCA patients are still far from satisfactory. In recent years, numerous long noncoding RNAs (lncRNAs) have been identified as crucial players in the development of various cancers, including CCA. Abnormally expressed lncRNAs in CCA, regulated by some upstream molecules, significantly influence the biological behavior of tumor cells and are involved in tumor development through various mechanisms, including interactions with functional proteins, participation in competing for endogenous RNA (ceRNA) regulatory networks, activation of cancer‐related signaling pathways and epigenetic modification of gene expression. Furthermore, several lncRNAs are closely associated with the clinicopathological features of CCA patients, and are promising biomarkers for diagnosing and prognostication of CCA. Some of these lncRNAs play an important role in chemotherapy drug resistance. In addition, lncRNAs have also been shown to be involved in the inflammation microenvironment of CCA and malignant outcome of CCA risk factors, such as cholestatic liver diseases. In view of the difficulty of diagnosing CCA, more attention should be paid to detectable lncRNAs in the serum or bile. This review summarizes the recent knowledge on lncRNAs in CCA and provides a new outlook on the molecular mechanisms of CCA development from the perspective of lncRNAs. Moreover, we also discussed the limitations of the current studies and differential expression of lncRNAs in different types of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Quanpeng Li
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Fei Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Qi Jiang
- Department of Gastroenterology, Dongtai People's Hospital, Yancheng, Jiangsu, 224000, P. R. China
| |
Collapse
|
11
|
Yu A, Zhao L, Kang Q, Li J, Chen K, Fu H. Transcription factor HIF1α promotes proliferation, migration, and invasion of cholangiocarcinoma via long noncoding RNA H19/microRNA-612/Bcl-2 axis. Transl Res 2020; 224:26-39. [PMID: 32505707 DOI: 10.1016/j.trsl.2020.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Cholangiocarcinoma, which is the most common invasive malignant tumor of the biliary tract, has poor prognosis. There is evidence suggesting that hypoxia-inducible factor 1α (HIF1α) plays an important role in cholangiocarcinoma. Also, microRNA-612 (miR-612) is another key regulator of cholangiocarcinoma. In this study, we investigate the scantly documented interaction of HIF1α and miR-612 in cholangiocarcinoma. We first undertook microarray-based cholangiocarcinoma gene expression profiles to screen out the differentially expressed long noncoding RNAs (lncRNAs) and genes. We used reverse transcription quantitative polymerase chain reaction to detect the expression of HIF1α in normal bile duct and cholangiocarcinoma tissues, and in corresponding cells lines. Cell counting kit 8, scratch, and Transwell assays were used to detect the proliferation, migration and invasion of cholangiocarcinoma cells. Cell cycle distribution and apoptosis were detected by flow cytometry. ChIP, dual luciferase reporter gene assay, RNA pull-down, and RNA immunoprecipitation were used to verify relationship between HIF1α and lncRNA H19, and lncRNA H19 and miR-612. We also monitored tumor formation in nude mice to verify the effect of HIF1α on cholangiocarcinoma. HIF1α expression was elevated in cholangiocarcinoma tissues and cells. Silencing HIF1α reduced proliferation, migration, and invasion of cholangiocarcinoma cells. HIF1α transcriptionally activated the expression of lncRNA H19. Overexpression of miR-612 could rescue the proliferation, migration and invasion of cholangiocarcinoma cells caused by lncRNA H19 overexpression. Taken together, HIF1α activated lncRNA H19-mediated miR-612/Bcl-2 pathway to promote cholangiocarcinoma, suggesting a promising therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Aijun Yu
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China.
| | - Luwen Zhao
- The First Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| | - Qingmin Kang
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| | - Jian Li
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| | - Kai Chen
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| | - Hua Fu
- The First Department of General Surgery, Affiliated Hospital of Chengde Medical University, Chengde, P.R. China
| |
Collapse
|
12
|
Sato K, Glaser S, Francis H, Alpini G. Concise Review: Functional Roles and Therapeutic Potentials of Long Non-coding RNAs in Cholangiopathies. Front Med (Lausanne) 2020; 7:48. [PMID: 32154257 PMCID: PMC7045865 DOI: 10.3389/fmed.2020.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNAs with lengths exceeding 200 nucleotides that are not translated into proteins. It is well-known that small non-coding RNAs, such as microRNAs (miRNAs), regulate gene expression and play an important role in cholangiopathies. Recent studies have demonstrated that lncRNAs may also play a key role in the pathophysiology of cholangiopathies. Patients with cholangiopathies often develop cholangiocarcinoma (CCA), which is cholangiocyte-derived cancer, in the later stage. Cholangiocytes are a primary target of therapies for cholangiopathies and CCA development. Previous studies have demonstrated that expression levels of lncRNAs are altered in the liver of cholangiopathies or CCA tissues. Some lncRNAs regulate gene expression by inhibiting functions of miRNAs leading to diseased liver conditions or CCA progression, suggesting that lncRNAs could be a novel therapeutic target for those disorders. This review summarizes current understandings of functional roles of lncRNAs in cholangiopathies and seek their potentials for novel therapies.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, TX, United States
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| |
Collapse
|
13
|
Li X, Luo Y, Liu L, Cui S, Chen W, Zeng A, Shi Y, Luo L. The long noncoding RNA ZFAS1 promotes the progression of glioma by regulating the miR-150-5p/PLP2 axis. J Cell Physiol 2019; 235:2937-2946. [PMID: 31535380 DOI: 10.1002/jcp.29199] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Numerous studies have reported that long noncoding RNA (lncRNA) dysregulation is involved in the progression of many malignant tumors, including glioma. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) plays an oncogenic role in various malignant tumors, such as gastric cancer and hepatocellular carcinoma. However, the underlying molecular mechanism of ZFAS1 in glioma has not been fully clarified. In this study, we found that the expression of ZFAS1 was upregulated in both glioma tissues and cell lines. Functional experiments revealed that ZFAS1 promoted glioma proliferation, migration and invasion, and increased resistance to temozolomide in vitro. By using online databases, RNA pull-down assays and luciferase reporter assays, ZFAS1 was demonstrated to act as a sponge of miR-150-5p. Furthermore, proteolipid protein 2 (PLP2) was shown to be the functional target of miR-150-5p. Rescue experiments revealed that ZFAS1 regulated the expression of PLP2 by sponging miR-150-5p. Finally, a xenograft tumor assay demonstrated that ZFAS1 promoted glioma growth in vivo. Our results showed that ZFAS1 promoted glioma malignant progression by regulating the miR-150-5p/PLP2 axis, which may provide a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yidan Luo
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Liang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sitong Cui
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangsheng Luo
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|