1
|
Zhao M, Cui Y, Wang F, Wu F, Li C, Liu S, Chen B. Ursolic Acid Regulates Immune Balance, Modulates Gut Microbial Metabolism, and Improves Liver Health in Mice. Int J Mol Sci 2024; 25:10623. [PMID: 39408951 PMCID: PMC11477038 DOI: 10.3390/ijms251910623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Ursolic acid (UA) has demonstrated significant immunomodulatory and hepatoprotective effects; however, the underlying mechanisms remain unclear. This study aims to analyze the impact of UA on the gut microbiome, metabolome, and liver transcriptome, investigate UA's role in maintaining gut immune homeostasis and liver health, and evaluate the potential contributions of gut microbes and their metabolites to these beneficial effects. Our findings indicate that UA enhances immune balance in the jejunum, fortifies intestinal barrier function, and promotes overall gut health. UA modulates the intestinal microbiota and its metabolic processes, notably increasing the abundance of beneficial bacteria such as Odoribacter and Parabacteroides, along with their metabolites, including ornithine and lactucin. Additionally, UA inhibits the expression of interleukin-1 receptor 1 (IL1R1) and calcium (Ca2+) voltage-gated channel auxiliary subunit beta 2 (CACNB2) while enhancing the synthesis pathways of retinol and ascorbic acid, thereby exerting a protective influence on liver function. In summary, UA enhances intestinal immune homeostasis and promotes liver health, with these advantageous effects potentially mediated by beneficial bacteria (Odoribacter and Parabacteroides) and their metabolites (ornithine and lactucin).
Collapse
Affiliation(s)
- Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Yali Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071051, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Chong Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| |
Collapse
|
2
|
Zhong R, Zhang F, Yang Z, Li Y, Xu Q, Lan H, Cyganek L, El-Battrawy I, Zhou X, Akin I, Borggrefe M. Epigenetic mechanism of L-type calcium channel β-subunit downregulation in short QT human induced pluripotent stem cell-derived cardiomyocytes with CACNB2 mutation. Europace 2022; 24:2028-2036. [PMID: 35894107 DOI: 10.1093/europace/euac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/15/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS A loss-of-function mutation in L-type calcium (Ca2+) channel subunit gene CACNB2 has been reported to cause short QT syndrome subtype 5 (SQT5). However, the mechanism underlying the loss-of-function of the Ca2+ channel has not been clarified. In the present study, we aim to explore the DNA methylation mechanism of L-type Ca2+ channel downregulation in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) of SQT5. METHODS AND RESULTS The hiPSC-CMs were generated from a healthy donor and a SQT5 patient carrying the CACNB2 variant c.1439C > T/p.S480L. The variant was genetically corrected using ribonucleoprotein-based CRISPR/Cas9 technique to obtain an isogenic control cell line. The action potential (AP) and Ca2+ current were measured by patch clamp. Protein expression levels were determined by western blotting. Dot blotting and bisulfite sequence were performed for epigenetic study. Our results showed that AP durations at 10% repolarization (APD10) and 50% repolarization (APD50) were significantly shortened in SQT5 cells and both the expression level of the β-subunit and channel current of L-type Ca2+ channel were reduced. Besides, an increased level of whole-genome DNA methylation and DNA methylation of CpG island in the promoter region of CACNB2 gene was detected. Overexpression of demethylation enzyme could rescue the decreased expression of CACNB2 and the L-type Ca2+ current. CONCLUSION In SQT5 hiPSC-CMs carrying the CACNB2-S480L variant, the decreased L-type Ca2+ current resulting from decreased CACNB2 protein expression was caused by enhanced methylation in the promoter region of the CACNB2 gene and upregulation of DNA methyltransferases might be one of the mechanisms.
Collapse
Affiliation(s)
- Rujia Zhong
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Feng Zhang
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Zhen Yang
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Yingrui Li
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany
| | - Qiang Xu
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen 37075, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen 37075, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim 68167, Germany
| | - Xiaobo Zhou
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim 68167, Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ibrahim Akin
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim 68167, Germany
| | - Martin Borggrefe
- First Department of Medicine (Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care), Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim 68167, Germany
| |
Collapse
|
3
|
Shi L, Li Y, Liu Q, Zhang L, Wang L, Liu X, Gao H, Hou X, Zhao F, Yan H, Wang L. Identification of SNPs and Candidate Genes for Milk Production Ability in Yorkshire Pigs. Front Genet 2021; 12:724533. [PMID: 34675963 PMCID: PMC8523896 DOI: 10.3389/fgene.2021.724533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Sow milk production ability is an important limiting factor impacting suboptimal growth and the survival of piglets. Through pig genetic improvement, litter sizes have been increased. Larger litters need more suckling mammary glands, which results in increased milk from the lactating sow. Hence, there is much significance to exploring sow lactation performance. For milk production ability, it is not practical to directly measure the milk yield, we used litter weight gain (LWG) throughout sow lactation as an indicator. In this study, we estimated the heritability of LWG, namely, 0.18 ± 0.07. We then performed a GWAS, and detected seven significant SNPs, namely, Sus scrofa Chromosome (SSC) 2: ASGA0010040 (p = 7.73E-11); SSC2:MARC0029355 (p = 1.30E-08), SSC6: WU_10.2_6_65751151 (p = 1.32E-10), SSC7: MARC0058875 (p = 4.99E-09), SSC10: WU_10.2_10_49571394 (p = 6.79E-08), SSC11: M1GA0014659 (p = 1.19E-07), and SSC15: MARC0042106 (p = 1.16E-07). We performed the distribution of phenotypes corresponding to the genotypes of seven significant SNPs and showed that ASGA0010040, MARC0029355, MARC0058875, WU_10.2_10_49571394, M1GA0014659, and MARC0042106 had extreme phenotypic values that corresponded to the homozygous genotypes, while the intermediate values corresponded to the heterozygous genotypes. We screened for flanking regions ± 200 kb nearby the seven significant SNPs, and identified 38 genes in total. Among them, 28 of the candidates were involved in lactose metabolism, colostrum immunity, milk protein, and milk fat by functional enrichment analysis. Through the combined analysis between 28 candidate genes and transcriptome data of the sow mammary gland, we found nine commons (ANO3, MUC15, DISP3, FBXO6, CLCN6, HLA-DRA, SLA-DRB1, SLA-DQB1, and SLA-DQA1). Furthermore, by comparing the chromosome positions of the candidate genes with the quantitative trait locus (QTLs) as previously reported, a total of 17 genes were found to be within 0.86–94.02 Mb of the reported QTLs for sow milk production ability, in which, NAV2 was found to be located with 0.86 Mb of the QTL region ssc2: 40936355. In conclusion, we identified seven significant SNPs located on SSC2, 6, 7, 10, 11, and 15, and propose 28 candidate genes for the ability to produce milk in Yorkshire pigs, 10 of which were key candidates.
Collapse
Affiliation(s)
- Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Huang L, Chu Y, Huang X, Ma S, Lin K, Huang K, Sun H, Yang Z. Association between gene polymorphisms of voltage-dependent Ca 2+ channels and hypertension in the Dai people of China: a case-control study. BMC MEDICAL GENETICS 2020; 21:44. [PMID: 32111194 PMCID: PMC7049211 DOI: 10.1186/s12881-020-0982-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Abnormal calcium homeostasis related to the development of hypertension. As the key regulator of intracellular calcium concentration, voltage-dependent calcium channels (VDCCs), the variations in these genes may have important effects on the development of hypertension. Here we evaluate VDCCs variability with respect to hypertension in the Dai ethnic group of China. METHODS A total of 1034 samples from Dai individuals were collected, of which 495 were used as cases, and 539 were used as controls. Blood pressure was measured using a standard mercury measurement method, three times with a rest for 5 min, and the average was used for analyses. Seventeen single nucleotide polymorphisms (SNPs) in the four protein-coding genes (CACNA1A, CACNA1C, CACNA1S, CACNB2) of VDCCs were identified by multiplex PCR-SNP typing technique. Chi-square tests and regression models were used to analyse the associations of SNPs with hypertension. RESULTS The results of chi-square tests showed that the allele frequencies of 5 SNPs were significantly different between the case and the control groups (P < 0.05), but the statistical significance was lost after Bonferroni's correction. However, after adjusting for BMI, age, sex and other factors by logistic regression analyses, the results showed that 5 SNPs consistent with chi-square tests (rs2365293, rs17539088, rs16917217, rs61839222 and rs10425859) were still statistically positive. CONCLUSIONS This finding suggested that the significant association of these SNPs with hypertension may be noteworthy in future studies.
Collapse
Affiliation(s)
- Lifan Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yan Chu
- Department of General Surgery of the 2nd People Hospital of Yunnan Province, Kunming, China
| | - Xiaoqin Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shaohui Ma
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Keqin Lin
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Kai Huang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hao Sun
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Zhaoqing Yang
- Institute of Medical Biology Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| |
Collapse
|