1
|
Higgins J, Santos B, Khanh TD, Trung KH, Duong TD, Doai NTP, Hall A, Dyer S, Ham LH, Caccamo M, De Vega J. Genomic regions and candidate genes selected during the breeding of rice in Vietnam. Evol Appl 2022; 15:1141-1161. [PMID: 35899250 PMCID: PMC9309459 DOI: 10.1111/eva.13433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Vietnam harnesses a rich diversity of rice landraces adapted to a range of conditions, which constitute a largely untapped source of diversity for the continuous improvement of cultivars. We previously identified a strong population structure in Vietnamese rice, which is captured in five Indica and four Japonica subpopulations, including an outlying Indica-5 group. Here, we leveraged that strong differentiation and 672 native rice genomes to identify genomic regions and genes putatively selected during the breeding of rice in Vietnam. We identified significant distorted patterns in allele frequency (XP-CLR) and population differentiation scores (F ST) resulting from differential selective pressures between native subpopulations, and later annotated them with QTLs previously identified by GWAS in the same panel. We particularly focussed on the outlying Indica-5 subpopulation because of its likely novelty and differential evolution, where we annotated 52 selected regions, which represented 8.1% of the rice genome. We annotated the 4576 genes in these regions and selected 65 candidate genes as promising breeding targets, several of which harboured alleles with nonsynonymous substitutions. Our results highlight genomic differences between traditional Vietnamese landraces, which are likely the product of adaption to multiple environmental conditions and regional culinary preferences in a very diverse country. We also verified the applicability of this genome scanning approach to identify potential regions harbouring novel loci and alleles to breed a new generation of sustainable and resilient rice.
Collapse
Affiliation(s)
| | | | - Tran Dang Khanh
- Agriculture Genetics Institute (AGI)HanoiVietnam
- Vietnam National University of AgricultureHanoiVietnam
| | | | | | | | | | | | - Le Huy Ham
- Agriculture Genetics Institute (AGI)HanoiVietnam
| | | | | |
Collapse
|
2
|
Zhang G, Shen T, Ren N, Jiang M. Phosphorylation of OsABA2 at Ser197 by OsMPK1 regulates abscisic acid biosynthesis in rice. Biochem Biophys Res Commun 2022; 586:68-73. [PMID: 34826703 DOI: 10.1016/j.bbrc.2021.11.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023]
Abstract
The mitogen-activated protein kinase OsMPK1 is involved in abscisic acid (ABA) biosynthesis in rice (Oryza sativa L.). However, the underlying molecular mechanisms of OsMPK1 in regulating ABA biosynthesis are poorly understood. Here, by using yeast two-hybrid assay and firefly luciferase complementary imaging assay, we show that OsMPK1 physically interact with a short-chain dehydrogenase protein OsABA2. However, OsMPK5, a homolog of OsMPK1, does not interact with OsABA2. Further, OsMPK1 can phosphorylate OsABA2S197 in vitro. Phosphorylation at the position of OsABA2S197 does not affect its subcellular localization, but enhances the stability of OsABA2 protein. We also found that OsABA2 has feedback regulation on OsMPK1 kinase activity. Further research reveals that OsMPK1 and OsABA2 coordinately regulate the biosynthesis of ABA, and phosphorylation of OsABA2 at Ser197 by OsMPK1 plays a crucial role in regulating the biosynthesis of ABA. Finally, genetic analysis showed that OsABA2 can enhance the sensitivity of rice to ABA and the tolerance of rice to drought and salt stress.
Collapse
Affiliation(s)
- Gang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ning Ren
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
3
|
Higgins J, Santos B, Khanh TD, Trung KH, Duong TD, Doai NTP, Khoa NT, Ha DTT, Diep NT, Dung KT, Phi CN, Thuy TT, Tuan NT, Tran HD, Trung NT, Giang HT, Nhung TK, Tran CD, Lang SV, Nghia LT, Van Giang N, Xuan TD, Hall A, Dyer S, Ham LH, Caccamo M, De Vega JJ. Resequencing of 672 Native Rice Accessions to Explore Genetic Diversity and Trait Associations in Vietnam. RICE (NEW YORK, N.Y.) 2021; 14:52. [PMID: 34110541 PMCID: PMC8192651 DOI: 10.1186/s12284-021-00481-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. RESULTS We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. CONCLUSIONS We showed how the rice diversity within Vietnam relates to the wider Asian rice diversity by using a number of approaches to provide a clear picture of the novel diversity present within Vietnam, mainly around the Indica-5 subpopulation. Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of low input sustainable and climate resilient rice.
Collapse
Affiliation(s)
- Janet Higgins
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Bruno Santos
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Tran Dang Khanh
- Agriculture Genetics Institute (AGI), Hanoi, Vietnam
- Vietnam National University of Agriculture, Hanoi, 131000, Vietnam
| | | | | | | | | | | | | | - Kieu Thi Dung
- Agriculture Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Tran Thi Thuy
- Agriculture Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Hoang Dung Tran
- Faculty of Biotechnology, Nguyen Tat Thanh University, Ho Chi Minh, 72820, Vietnam
| | - Nguyen Thanh Trung
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | | | - Ta Kim Nhung
- Agriculture Genetics Institute (AGI), Hanoi, Vietnam
| | | | - Son Vi Lang
- Agriculture Genetics Institute (AGI), Hanoi, Vietnam
| | - La Tuan Nghia
- Plant Resource Center, An Khanh, Hoai Duc, Hanoi, 152900, Vietnam
| | - Nguyen Van Giang
- Vietnam National University of Agriculture, Hanoi, 131000, Vietnam
| | - Tran Dang Xuan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, 739-8529, Japan
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Sarah Dyer
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Le Huy Ham
- Agriculture Genetics Institute (AGI), Hanoi, Vietnam
| | - Mario Caccamo
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Jose J De Vega
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| |
Collapse
|
4
|
Liao P, Leung KP, Lung SC, Panthapulakkal Narayanan S, Jiang L, Chye ML. Subcellular Localization of Rice Acyl-CoA-Binding Proteins ACBP4 and ACBP5 Supports Their Non-redundant Roles in Lipid Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:331. [PMID: 32265974 PMCID: PMC7105888 DOI: 10.3389/fpls.2020.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs), conserved at the acyl-CoA-binding domain, can bind acyl-CoA esters as well as transport them intracellularly. Six ACBPs co-exist in each model plant, dicot Arabidopsis thaliana (thale cress) and monocot Oryza sativa (rice). Although Arabidopsis ACBPs have been studied extensively, less is known about the rice ACBPs. OsACBP4 is highly induced by salt treatment, but down-regulated following pathogen infection, while OsACBP5 is up-regulated by both wounding and pathogen treatment. Their differential expression patterns under various stress treatments suggest that they may possess non-redundant functions. When expressed from the CaMV35S promoter, OsACBP4 and OsACBP5 were subcellularly localized to different endoplasmic reticulum (ER) domains in transgenic Arabidopsis. As these plants were not stress-treated, it remains to be determined if OsACBP subcellular localization would change following treatment. Given that the subcellular localization of proteins may not be reliable if not expressed in the native plant, this study addresses OsACBP4:GFP and OsACBP5:DsRED expression from their native promoters to verify their subcellular localization in transgenic rice. The results indicated that OsACBP4:GFP was targeted to the plasma membrane besides the ER, while OsACBP5:DsRED was localized at the apoplast, in contrast to their only localization at the ER in transgenic Arabidopsis. Differences in tagged-protein localization in transgenic Arabidopsis and rice imply that protein subcellular localization studies are best investigated in the native plant. Likely, initial targeting to the ER in a non-native plant could not be followed up properly to the final destination(s) unless it occurred in the native plant. Also, monocot (rice) protein targeting may not be optimally processed in a transgenic dicot (Arabidopsis), perhaps arising from the different processing systems for routing between them. Furthermore, changes in the subcellular localization of OsACBP4:GFP and OsACBP5:DsRED were not detectable following salt and pathogen treatment, respectively. These results suggest that OsACBP4 is likely involved in the intracellular shuttling of acyl-CoA esters and/or other lipids between the plasma membrane and the ER, while OsACBP5 appears to participate in the extracellular transport of acyl-CoA esters and/or other lipids, suggesting that they are non-redundant proteins in lipid trafficking.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
| | - King Pong Leung
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | | | - Liwen Jiang
- Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
- State Key Laboratory of Agrobiotechnology, CUHK, New Territories, China
- *Correspondence: Mee-Len Chye,
| |
Collapse
|